The anionic form of p-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) has been extensively employed as a model of the chromophore of the green fluorescence protein. The bright S1 excited state HBDI(-) has a measured lifetime of 1.4 ps in the gas-phase and is dominated by two non-radiative decay mechanisms: internal conversion and autodetachment into the neutral continuum. Here, time-resolved photoelectron spectroscopy has been used to determine the yields of these two channels from which the lifetime for autodetachment was found to be ∼30 ps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4819078 | DOI Listing |
Environ Pollut
January 2025
Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
Airborne microorganisms in hospitals present significant health risks to both patients and employees. However, their pollution profiles and associated hazards in different hospital areas remained largely unknown during the extensive use of masks and disinfectants. This study investigated the characteristics of bioaerosols in an urban general hospital during the COVID-19 pandemic and found that airborne bacteria and fungi concentrations range from 87±35 to 1037±275 CFU/m and 21±15 to 561±132 CFU/m, respectively, with the outpatient clinic and internal medicine ward showing the highest levels.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China.
Frustrated Lewis pair chemistry (FLP) occupy a crucial position in nonmetal-mediated catalysis, especially toward activation of inert gas molecules. Yet, one formidable issue of homogeneous FLP catalysts is their instability on preservation and recycling. Here we contribute a general solution that marries the polyhedral oligomeric silsesquioxane (POSS) with a structurally specific frustrated Lewis acid to fabricate porous polymer networks, which can form water-insensitive heterogeneous FLP catalysts upon employing Lewis base substrates.
View Article and Find Full Text PDFMolecules
January 2025
School of Materials and Environment, Beijing Institute of Technology, Zhuhai 519088, China.
This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and ()-3-(2-(1-benzo[]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21511, Egypt.
Background/objectives: Breast cancer (BC) remains one of the most prevalent and deadly cancers worldwide, with limited access to advanced treatments in developing regions. There is a critical need for novel therapies with unique mechanisms of action, especially to overcome resistance to conventional platinum-based drugs. This study investigates the anticancer potential of the ruthenium complex Bis(quinolin-8-olato)bis(triphenylphosphine)ruthenium(II) (Ru(quin)) in ER-positive (T47D) and triple-negative (MDA-MB-231) BC cell lines.
View Article and Find Full Text PDFFoods
January 2025
State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
In order to overcome the bioavailability limitation of polysaccharide (LPS) caused by its high molecular weight and complex structure, two low-molecular-weight degraded polysaccharides, namely G-LPS(8) and G-LPS(16), were prepared through enzymatic degradation. The molecular weight of LPS was significantly reduced by enzymolysis, leading to increased exposure of internal functional groups and altering the molar ratio of its constituent monosaccharides. The results of antioxidant experiments showed that enzymatic hydrolysis had the potential to enhance the antioxidant performance of LPS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!