Fluid-structure effects of cloaking a submerged spherical shell.

J Acoust Soc Am

Department of Applied Mathematics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943, USA.

Published: September 2013

Backscattering from a cloaked submerged spherical shell is analyzed in the low, mid, and high frequency regimes. Complex poles of the scattered pressure amplitudes using Cauchy residue theory are evaluated in an effort to explain dominant features of the scattered pressure and how they are affected by the introduction of a cloak. The methodology used is similar to that performed by Sammelmann and Hackman [J. Acoust. Soc. Am. 85, 114-124 (1989); J. Acoust. Soc. Am. 89, 2096-2103 (1991); J. Acoust. Soc. Am. 90, 2705-2717 (1991)] in a series of papers written on scattering from an uncloaked spherical shell. In general, it is found that cloaking has the effect of diminishing the amplitude and shifting tonal backscatter responses. Extreme changes of normal and tangential fluid phase velocities at the fluid-solid interface when cloaking is employed leads to elimination of the "mid-frequency enhancement" near the coincidence frequency for even modestly effective cloaks, while reduction of the "high-frequency enhancement" resulting from the "thickness quasi-resonance" near the cut-off frequency of the symmetric (S2(B)) mode requires more effective cloaking, but can be practically eliminated by employing a cloak that creates tangential acoustic velocities in excess of the S2(B) mode phase speed near cutoff.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.4816492DOI Listing

Publication Analysis

Top Keywords

spherical shell
12
acoust soc
12
submerged spherical
8
scattered pressure
8
s2b mode
8
fluid-structure effects
4
cloaking
4
effects cloaking
4
cloaking submerged
4
shell backscattering
4

Similar Publications

This study introduces an eco-friendly approach to fabricating superstrong, core-shell, composite microcapsules, offering a sustainable alternative to traditional insoluble microplastic-based materials like melamine-formaldehyde. These microcapsules were engineered with a thick CaCO shell formed via crystal ripening in the presence of water-soluble poly(acrylic acid), encasing a hexylsalicylate oil core armored by hydrophilic SiO nanoparticles. An additional polydopamine layer was deposited via oxidative autopolymerization at pH 8.

View Article and Find Full Text PDF

The combination of different metals into a discrete colloidal nanocrystal (NC) lattice to form solid solutions can result in synergetic and non-additive effects, leading to physicochemical properties distinct from those observed in monometallic NCs. However, these features are influenced by parameters that are challenging to control simultaneously using conventional synthesis methods, including composition, morphology, size, and elemental distribution. In this study, we present a methodology that exploits seed-mediated growth routes and pulsed laser-induced ultrafast heating to synthesize bimetallic and trimetallic colloidal alloy NCs with tailored compositions, well-defined spherical morphologies, and precise control over the number of atoms per NC lattice.

View Article and Find Full Text PDF

Pistol Ribozyme-Driven Catalytic Spherical Nucleic Acid Integrates Gene and Chemotherapy for Enhanced Cancer Therapy.

J Am Chem Soc

March 2025

State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300071, China.

Gene-targeted therapies are revolutionizing cancer treatment due to their high specificity and low toxicity. Among these, ribozymes hold promise as independent gene therapy agents capable of directly cleaving target mRNAs. The pistol ribozyme, discovered in 2015, stands out for its compact structure and robust cleavage activity, making it a promising candidate for RNA silencing under physiological conditions.

View Article and Find Full Text PDF

Evaporation driven buckling of a drop laden with graphene oxide nanosheets.

Soft Matter

March 2025

Department of Process & Energy, Faculty of Mechanical Engineering, TU Delft, The Netherlands.

The time-dependent shape of an evaporating spherical water drop containing graphene oxide (GO) nanosheets is measured for varying solid concentration, humidity level, and pH. The drop is sitting on a superhydrophobic surface, depinned from it. Three different stages of evaporation are identified: isotropic retraction of the drop interface, buckling of the shell of particles accumulated at the fluid interface, and shrinking of the buckled shell at constant shell shape.

View Article and Find Full Text PDF

Lung cancer remains one of the most lethal malignancies globally, underscoring the dire need for effective therapy. Scheduled administration of gemcitabine (GMC) followed by docetaxel (DTX) is clinically employed. Yet, the detrimental systemic toxicity and pharmacokinetic inadequacies such as the short plasma half-life of the former and poor bioavailability of the latter limit their use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!