Galectin-7 was initially described as a marker of epithelial differentiation expressed in the stratified epithelium of various tissues. Like other members of the galectin family, its expression level is often significantly altered in cancer cells. In breast cancer, its expression is significantly augmented in aggressive molecular subtypes, most notably in estrogen receptor-negative tumors and in cell lines with a basal-like phenotype. Studies using experimental mouse models have further shown high expression of galectin-7 was sufficient to increase the metastatic behavior of poorly metastatic breast cancer cells, rendering them more resistant to apoptosis. This expression pattern in breast cancer cells is unexpected because galectin-7 was originally identified as a p53-induced gene. To address this paradox, we have examined the molecular mechanisms regulating galectin-7 in breast cancer cells. Our results showed that transfection of breast cancer cells with expression vectors encoding mutant p53 was sufficient to induce galectin-7 at both mRNA and protein levels. Doxorubicin treatment of breast cancer cells harboring a mutant p53 also induced galectin-7. This induction was specific since knockdown of endogenous mutant p53 inhibited doxorubicin-induced galectin-7 expression. The p53-induced galectin-7 expression in breast cancer cells correlated with increased NF-κB activity and was inhibited by NF-κB inhibitors, indicating that the ability of mutant p53 to induce galectin-7 was dependent on NF-κB activity. The implication of NF-κB was further supported by data showing that NF-κB bound to the endogenous galectin-7 promoter and that TNFα-induced galectin-7 expression was abolished by NF-κB inhibitors. Taken together, our data provide an explanation to the observed high galectin-7 expression levels in cancer cells and suggest that galectin-7 could be part of a common pathway used by mutant p53 to promote cancer progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743813 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0072468 | PLOS |
Cell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China.
Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.
Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.
BMC Cancer
January 2025
Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
Background: Gastric cancer peritoneal metastasis lacks effective predictive indices. This article retrospectively explored predictive values of DNA ploidy, stroma, and nucleotyping in gastric cancer peritoneal metastasis.
Methods: A comprehensive analysis was conducted on specimens obtained from 80 gastric cancer patients who underwent gastric resection at the Department of Gastrointestinal Surgery of Wuhan University Renmin Hospital.
Sci Rep
January 2025
School of Stomatology, Bengbu Medical University, No. 2600 Donghai Road, Bengbu, 233030, China.
Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!