Patients with chest pain account for 10% of US emergency room visits according to data from the Center for Disease Control and Prevention (2013). For triage of these patients, cardiac biomarkers troponin I and T are endorsed as standard indicators for acute myocardial infarction (AMI, or heart attack). Thus, there is significant interest in developing a rapid, point-of-care (POC) device for troponin detection. In this work, a rapid, quantitative, and label-free assay, which is specific for cardiac troponin T (cTnT) detection, using fluorescent single-walled carbon nanotubes (SWCNTs), is demonstrated. Chitosan-wrapped carbon nanotubes are cross-linked to form a thin gel that is further functionalized with nitrilotriacetic acid (NTA) moieties. Upon chelation of Ni(2+) , the Ni(2+) -NTA group binds to a hexa-histidine-modified troponin antibody, which specifically recognizes the target protein, troponin T. As the troponin T binds to the antibody, the local environment of the sensor changes, allowing direct troponin detection through intensity changes in SWCNT bandgap fluorescence. This platform represents the first near-infrared SWCNT sensor array for cTnT detection. Detection can be completed within 5 min, demonstrating a linear response to cTnT concentration and an experimental detection limit of 100 ng mL(-1) (2.5 nm). This platform provides a promising new tool for POC AMI detection in the future. Moreover, the work presents two new methods of quantifying the number of amines and carboxylic groups, respectively, in a carbon hydrogel matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.201300033DOI Listing

Publication Analysis

Top Keywords

quantitative label-free
8
troponin
8
fluorescent single-walled
8
single-walled carbon
8
troponin detection
8
ctnt detection
8
carbon nanotubes
8
detection
7
rapid direct
4
direct quantitative
4

Similar Publications

Label-free quantitative imaging of conjunctival goblet cells.

Ocul Surf

January 2025

Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:

Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.

Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.

View Article and Find Full Text PDF

Imaging cells and nanoparticles using modulated optically computed phase microscopy.

Sci Rep

January 2025

Department of Chemistry & Environmental Science, Jordan Hu College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, NJ, 07102, USA.

Nanoparticles (NPs) have been successfully used as drug delivery systems. To develop and optimize NP-based drug delivery systems, it is essential to understand the dynamics of cell-NP interactions. Quantitative phase imaging techniques enable label-free imaging and have the potential to reveal how cells interact with NPs.

View Article and Find Full Text PDF

Proteomic Variation in the Oral Secretion of Spodoptera exigua and Spodoptera littoralis Larvae in Response to Different food Sources.

J Chem Ecol

January 2025

Biotechnological Control of Pests Laboratory, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, 46100, Spain.

The Spodoptera genus is defined as the pest-rich genus because it contains some of the most destructive lepidopteran crop pests, characterized by a wide host range. During feeding, the caterpillars release small amounts of oral secretion (OS) onto the wounded leaves. This secretion contains herbivore-induced molecular patterns (HAMPs) that activate the plant defense response, as well as effectors that may inhibit or diminish the plant's anti-herbivory response.

View Article and Find Full Text PDF

A rapid, sensitive, and high-throughput sample preparation method is of paramount significance for proteomics analysis. Here, we report a fast, high-sensitivity MICROFASP method that is capable of completing sample preparation within 1.5 h, enhancing the throughput by over 13 times compared to the previous reports.

View Article and Find Full Text PDF

Significance: Imaging flow cytometry allows highly informative multi-point cell analysis for biological assays and medical diagnosis. Rapid processing of the imaged cells during flow allows real-time classification and sorting of the cells. Off-axis holography enables imaging flow cytometry without chemical cell staining but requires digital processing to the optical path delay profile for each frame before the cells can be classified, which slows down the overall processing throughput.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!