See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201302113DOI Listing

Publication Analysis

Top Keywords

see-through dye-sensitized
8
dye-sensitized solar
8
solar cells
8
cells photonic
8
tandem building
8
building integrated
8
integrated photovoltaics
8
photonic reflectors
4
reflectors tandem
4
photovoltaics see-through
4

Similar Publications

The fabrication of colorless and see-through dye-sensitized solar cells (DSCs) requires the photosensitizers to have little or no absorption in the visible light region of the solar spectrum. However, a trade-off between transparency and power conversion efficiency (PCE) has to be tackled, since most transparent DSCs are showing low PCE when compared to colorful and opaque DSCs. One strategy to increase PCE is applying two cosensitizers with selective conversion of the UV and NIR radiation, therefore, the non-visible part only is absorbed.

View Article and Find Full Text PDF

Most photovoltaic (PV) technologies are opaque to maximize visible light absorption. However, see-through solar cells open additional perspectives for PV integration. Looking beyond maximizing visible light harvesting, this work considers the human eye photopic response to optimize a selective near-infrared sensitizer based on a polymethine cyanine structure (VG20-C ) to render dye-sensitized solar cells (DSSCs) fully transparent and colorless.

View Article and Find Full Text PDF

Semitransparent dye-sensitized solar cells (DSCs) are appealing as aesthetically pleasing and colorful see-through photovoltaics. Green semitransparent DSCs have been presented, but the best ones rely on green zinc porphyrin photosensitizers and high volatile electrolytes. For potential outdoor applications, the zinc porphyrin DSCs employing ionic liquid electrolytes merely reached a power conversion efficiency (PCE) of 6.

View Article and Find Full Text PDF

See-through dye-sensitized solar cells: photonic reflectors for tandem and building integrated photovoltaics.

Adv Mater

October 2013

Laboratory of Photonic and Interfaces, Institute of Physical Chemistry, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.

See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics.

View Article and Find Full Text PDF

YD12 (eta = 6.7%) is a green sensitizer remarkable for its outstanding cell performance beyond that of N719 (eta = 6.1%) with no added scattering layer; the additional scattering layer assists N719 in promoting the efficiency in the red shoulder of the spectrum, but has only a small effect on the improvement of the cell performance for porphyrins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!