Laminarialean species (so-called kelps) are the largest photosynthetic organisms in aquatic environments, constituting significant ecological components of coastal ecosystems. The largest kelps such as Macrocystis exhibit differentiation between stipe and blade, as well as buoyancy to maintain the distal portion at the water's surface for photosynthesis, while bearing reproductive structures only near the base on special blades (sporophylls). There is a considerable gap between basic kelps such as Chorda and derived kelps, and the evolution of kelp specialization remains unclear. Here we report novel reproductive adaptations in the recently discovered species Aureophycus aleuticus; unlike any known kelps, A. aleuticus forms zoidangia only on the expanded, disc-shaped holdfast. Molecular phylogeny suggests that A. aleuticus is most basal among derived kelps. Because Aureophycus lacks any of the elaborate anatomical structures found in other derived kelps, we suggest that it exhibits some of the most ancestral morphological features of kelps.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749548 | PMC |
http://dx.doi.org/10.1038/srep02491 | DOI Listing |
Mar Environ Res
December 2024
Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laoshan Laboratory, Qingdao, 266237, China.
Coastal bays link terrestrial and oceanic carbon reservoirs and play important roles in marine carbon cycles. Particulate organic carbon (POC) produced by phytoplankton is a major autochthonous carbon source in coastal bays. Previous studies on the fate of POC produced by phytoplankton mainly focused on the relationship between phytoplankton and zooplankton in classic food webs, while our knowledge on the roles of bacterioplankton is still limited, particularly in bays under highly intensive aquaculture activities.
View Article and Find Full Text PDFGlob Chang Biol
December 2024
Hopkins Marine Station and Oceans Department, Stanford University, Pacific Grove, California, USA.
Under accelerating threats from climate-change impacts, marine protected areas (MPAs) have been proposed as climate-adaptation tools to enhance the resilience of marine ecosystems. Yet, debate persists as to whether and how MPAs may promote resilience to climate shocks. Here, we use 38 years of satellite-derived kelp cover to empirically test whether a network of 58 temperate coastal MPAs in Central and Southern California enhances the resistance of kelp forest ecosystems to, and their recovery from, the unprecedented 2014-2016 marine heatwave regime that occurred in the region.
View Article and Find Full Text PDFMar Drugs
October 2024
State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China.
Alginate oligosaccharides (AOs), derived from alginate degradation, exhibit diverse biological activities and hold significant promise in various fields. The enzymatic preparation of AOs relies on alginate lyases, which offers distinct advantages. In contrast to the conventional use of sodium alginate derived from brown algae as the substrate for the enzymatic preparation of AOs, AO preparation directly from brown algae is more appealing due to its time and energy efficiency.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:
Seaweeds, despite being rich in beneficial substances, also contain toxic metals such as cadmium (Cd), leading to ongoing debates about their health impacts. This study assessed the risk of Cd exposure from consuming nori and kelp, as well as the potential benefits of these seaweeds in mitigating Cd exposure from rice, using mouse bioassays. The results indicated that all test nori samples (n = 35) had Cd concentration exceeding 1.
View Article and Find Full Text PDFJ Phycol
December 2024
Department of Chemistry, University of Otago, Dunedin, New Zealand.
Genomic resources have yielded unprecedented insights into ecological and evolutionary processes, not to mention their importance in economic and conservation management of specific organisms. However, the field of macroalgal genomics is hampered by difficulties in the isolation of suitable DNA. Even when DNA that appears high quality by standard metrics has been isolated, such samples may not perform well during the sequencing process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!