Functional responses and molecular mechanisms involved in histone-mediated platelet activation.

Thromb Haemost

Mirta Schattner, Instituto de Medicina Experimental, CONICET-ANM, Pacheco de Melo 3081, Buenos Aires 1425, Argentina, Tel.: +54 11 4805 5759 ext. 301, Fax: +54 11 4805 0712, E-mail:

Published: November 2013

Histones are highly alkaline proteins found in cell nuclei and they can be released by either dying or inflammatory cells. The recent observations that histones are major components of neutrophil extracellular traps and promote platelet aggregation and platelet-dependent thrombin generation have shown that these proteins are potent prothrombotic molecules. Because the mechanism(s) of platelet activation by histones are not completely understood, we explored the ability of individual recombinant human histones H1, H2A, H2B, H3 and H4 to induce platelet activation as well as the possible molecular mechanisms involved. All histones were substrates for platelet adhesion and spreading and triggered fibrinogen binding, aggregation, von Willebrand factor release, P-selectin and phosphatidylserine (PS) exposure and the formation of platelet-leukocyte aggregates; however, H4 was the most potent. Histone-mediated fibrinogen binding, P-selectin and PS exposure and the formation of mixed aggregates were potentiated by thrombin. Histones induced the activation of ERK, Akt, p38 and NFκB. Accordingly, histone-induced platelet activation was significantly impaired by pretreatment of platelets with inhibitors of ERK (U 0126), PI3K/Akt (Ly 294002), p38 (SB 203580) and NFκB (BAY 11-7082 and Ro 106-9920). Preincubation of platelets with either aspirin or dexamethasone markedly decreased fibrinogen binding and the adhesion mediated by histones without affecting P-selectin exposure. Functional platelet responses induced by H3 and H4, but not H1, H2A and H2B, were partially mediated through interaction with Toll-like receptors -2 and -4. Our data identify histones as important triggers of haemostatic and proinflammatory platelet responses, and only haemostatic responses are partially inhibited by anti-inflammatory drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1160/TH13-02-0174DOI Listing

Publication Analysis

Top Keywords

platelet activation
16
fibrinogen binding
12
molecular mechanisms
8
mechanisms involved
8
platelet
8
histones
8
activation histones
8
h2a h2b
8
exposure formation
8
p-selectin exposure
8

Similar Publications

Platelet membrane-modified exosomes targeting plaques to activate autophagy in vascular smooth muscle cells for atherosclerotic therapy.

Drug Deliv Transl Res

January 2025

Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.

Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.

View Article and Find Full Text PDF

Analysis of the effect of platelet function and different doses of ticagrelor after flow diverter treatment of intracranial aneurysms.

Neurosurg Rev

January 2025

Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China.

Ticagrelor has become the standard drug for the treatment of intracranial aneurysms (IAs) with flow diverters (FDs), but the dosage has not been standardized. The effect of platelet function on clinical and imaging prognosis remains unclear. This study aimed to show the effects of different doses of ticagrelor and platelet aggregation function on the clinical and imaging prognosis after FDs treatment of aneurysms.

View Article and Find Full Text PDF

Introduction: Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that affects various body systems, including the skin and facial features. Estrogen promotes lupus in human and mouse models of SLE. In this study, we conducted an in vivo study to investigate the relationship between two estrogen receptors (ERα and ERβ) and platelet-activating factor acetylhydrolase (PAF-AH) on the symptoms of SLE.

View Article and Find Full Text PDF

In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.

View Article and Find Full Text PDF

Antibodies to β2-glycoprotein I (β2GPI) cause thrombosis in antiphospholipid syndrome, however the role of β2GPI in coagulation in vivo is not understood. To address this issue, we developed β2GPI-deficient mice (Apoh-/-) by deleting exon 2 and 3 of Apoh using CRISPR/Cas9 and compared the development of thrombosis in wild-type (WT) and Apoh-/- mice using rose bengal and FeCl3-induced carotid thrombosis, laser-induced cremaster arteriolar injury, and inferior vena cava (IVC) stasis models. We also compared tail bleeding times and activation of platelets from WT and Apoh-/- mice in the absence and presence of β2GPI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!