HIV immune activation drives increased Eomes expression in memory CD8 T cells in association with transcriptional downregulation of CD127.

AIDS

aCMRS/Laboratory of Immunoregulation, NIAID bExperimental Immunology Branch, NCI, NIH, Bethesda cLaboratory of Molecular Immunoregulation, NCI, NIH, Frederick dBiostatistics Research Branch, NIAID, NIH, Bethesda eCollaborative Clinical Research Branch, NIAID, NIH, Frederick, Maryland, USA.

Published: July 2013

Background: During HIV infection distinct mechanisms drive immune activation of the CD4 and CD8 T cells leading to CD4 T-cell depletion and expansion of the CD8 T-cell pool. This immune activation is polyclonal and extends beyond HIV-specific T cells. One consequence of this immune activation is a profound decrease in IL-7Rα (CD127) expression on memory CD8 T cells. The mechanisms leading to this are unknown and because of the potential impact of reduced IL-7 signaling in memory T cells specific to HIV and other pathogens, in the present study we examined the molecular mechanisms implicated in this downregulation of CD127.

Methods: Membrane bound (mIL7RA) and soluble (sIL7RA) mRNA expression was determined by qRT-PCR. CD127, Eomesodermin (Eomes) and T-bet expression in healthy controls and HIV-infected patients were studied by flow cytometry.

Results: CD127 downregulation occurs at the transcriptional level for both mIL7RA and sIL7RA alternative spliced forms in the CD127 memory CD8 T cells. CD127 memory CD8 T cells exhibited increased Eomes expression and an 'effector-like' gene profile. These changes were associated with higher HIV-RNA levels. Following combination antiretroviral therapy (cART), there was an increase in CD127 expression over an extended period of time (>5 months) which was associated with decreased Eomes expression.

Conclusion: CD127 is downregulated at a transcriptional level in memory CD8 T cells in association with upregulation of Eomes expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577351PMC
http://dx.doi.org/10.1097/QAD.0b013e3283618487DOI Listing

Publication Analysis

Top Keywords

cd8 cells
24
memory cd8
20
immune activation
16
eomes expression
12
increased eomes
8
expression memory
8
cells
8
cells association
8
cd127
8
cd127 expression
8

Similar Publications

CD8+ tissue-resident memory T cells (TRM) are strategically located in peripheral tissues, enabling a rapid response to local infections, which is different from circulating memory CD8+ T cells. Their unique positioning makes them promising targets for vaccines designed to enhance protection at barrier sites and other organs. Recent studies have shown a correlation between CD8+ TRM cells and favorable clinical outcomes in various types of cancer, indicating their potential role in immune checkpoint blockade (ICB) therapies.

View Article and Find Full Text PDF

BCL11B is a transcription factor essential for central nervous system development and T-cell differentiation that regulates numerous genes across various pathways. Heterozygous BCL11B defects can lead to a broad spectrum of phenotypes, including neurological disorders with or without immunological features. STX11 encodes a t-SNARE protein crucial for the final fusion of lytic granules with the plasma membrane of NK-cells and CD8 T-cells.

View Article and Find Full Text PDF

Background: We evaluated severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2)-specific humoral and cellular responses for up to 6 months after the 3rd dose of ancestral coronavirus disease 2019 (COVID-19) vaccination in people living with HIV (PLWH) and healthy controls (HCs) who were not infected with COVID-19.

Methods: Anti-spike receptor-binding domain IgG (anti-RBD IgG) concentrations using chemiluminescence immunoassay and neutralizing antibodies using focus reduction neutralization test (FRNT) were assessed at 1 week after each dose of vaccination, and 3 and 6 months after the 3rd dose in 62 PLWH and 25 HCs. T-cell responses using intracellular cytokine stain were evaluated at 1 week before, and 1 week and 6 months after the 3rd dose.

View Article and Find Full Text PDF

This article reviews the role of different types of T lymphocyte subpopulations in pathological cardiac fibrosis remodeling. T helper 17 (Th17) cells are implicated in promoting the development of pathological cardiac fibrosis remodeling, while regulatory T (Treg) cells exert an immunosuppressive functions as negative regulators, attributing to their interleukin-10 (IL-10) secretion and functional phenotype. Th1 and Th2 cells are involved in different stages of the inflammatory response in pathological cardiac fibrosis remodeling, and their influence varies according to the pathological mechanisms of different cardiac diseases.

View Article and Find Full Text PDF

Objectives: Takayasu arteritis (TAK) is an inflammatory vasculitis that affects the aorta and its primary branches. The pathogenesis of TAK remains elusive, yet identifying key cell types in the aorta of TAK patients is crucial for uncovering cellular heterogeneity and discovering potential therapeutic targets.

Methods: This study utilized single-cell transcriptome analysis on aortic specimens from three TAK patients, with control data sourced from a publicly available database (GSE155468).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!