Class III malocclusion is a common dentofacial phenotype with a variable prevalence according to ethnic background. The etiology of Class III malocclusion has been attributed mainly to interactions between susceptibility genes and environmental factors during the morphogenesis of the mandible and maxilla. Class III malocclusion shows familial recurrence, and family-based studies support a predominance of an autosomal-dominant mode of inheritance. We performed whole-exome sequencing on five siblings from an Estonian family affected by Class III malocclusion. We identified a rare heterozygous missense mutation, c.545C>T (p.Ser182Phe), in the DUSP6 gene, a likely causal variant. This variant co-segregated with the disease following an autosomal-dominant mode of inheritance with incomplete penetrance. Transcriptional activation of DUSP6 has been presumed to be regulated by FGF/FGFR and MAPK/ERK signaling during fundamental processes at early stages of skeletal development. Several candidate genes within a linkage region on chromosome 12q22-q23--harboring DUSP6--are implicated in the regulation of maxillary or mandibular growth. The current study reinforces that the 12q22-q23 region is biologically relevant to craniofacial development and may be genetically linked to the Class III malocclusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0022034513502790 | DOI Listing |
The Rac1 P29S hotspot mutation in cutaneous melanoma is associated with resistance to MAPK pathway inhibitors (MAPKi) and worse clinical outcomes. Moreover, activation of Rac1 guanine exchange factors (GEFs) also promotes MAPKi-resistance, particularly in undifferentiated melanoma cells. Here we delineate mechanisms of Rac1-driven MAPKi-resistance and identify strategies to inhibit the growth of this class of cutaneous melanomas.
View Article and Find Full Text PDFUnlabelled: The reflexive translation of symbols in one chemical language to another defined genetics. Yet, the co-linearity of codons and amino acids is so commonplace an idea that few even ask how it arose. Readout is done by two distinct sets of proteins, called aminoacyl-tRNA synthetases (AARS).
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Firenze, Italy.
2,2'-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Medicine, Universite de Montreal, Montreal, QC, Canada.
Severe COVID-19 can trigger a cytokine storm, leading to acute respiratory distress syndrome (ARDS) with similarities to superantigen-induced toxic shock syndrome. An outstanding question is whether SARS-CoV-2 protein sequences can directly induce inflammatory responses. In this study, we identify a region in the SARS-CoV-2 S2 spike protein with sequence homology to bacterial super-antigens (termed P3).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China. Electronic address:
Class III peroxidases (PRXs) play critical roles in plant growth and development by oxidizing various substrates with HO. Although many PRXs have been identified and their roles in biotic and abiotic stress responses have extensively investigated in plants. However, functional mechanisms of PRXs in seed development remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!