A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

N-aryl piperazine metabotropic glutamate receptor 5 positive allosteric modulators possess efficacy in preclinical models of NMDA hypofunction and cognitive enhancement. | LitMetric

N-aryl piperazine metabotropic glutamate receptor 5 positive allosteric modulators possess efficacy in preclinical models of NMDA hypofunction and cognitive enhancement.

J Pharmacol Exp Ther

Department of Pharmacology and Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee (K.J.G., E.J.H., A.S.H., N.E.B., S.R.S., J.T.M., S.J., T.M.B., C.D.W., C.M.N., C.W.L., P.J.C., C.K.J.); Drug Discovery Biology, MIPS, Monash University, Parkville, Victoria, Australia (K.J.G.); Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada (A.J.R.); Institute of Imaging and Science, Vanderbilt University (N.E.B.); Janssen Research & Development, Beerse, Belgium (T.S., W.H.D., A.A., H.L., G.J.M., C.M., B.J.H.); Janssen Research & Development, Toledo, Spain (J.M.B.); Department of Cell Biology, Duke University, Durham, North Carolina (M.G.C., T.L.D.); Department of Chemistry, Vanderbilt University Medical Center, Nashville, Tennessee (C.W.L.); and U.S. Department of Veterans Affairs, Nashville, Tennessee (C.K.J.).

Published: November 2013

Impaired transmission through glutamatergic circuits has been postulated to play a role in the underlying pathophysiology of schizophrenia. Furthermore, inhibition of the N-methyl-d-aspartate (NMDA) subtype of ionotropic glutamate receptors (NMDAR) induces a syndrome that recapitulates many of the symptoms observed in patients with schizophrenia. Selective activation of metabotropic glutamate receptor subtype 5 (mGlu5) may provide a novel therapeutic approach for treatment of symptoms associated with schizophrenia through facilitation of transmission through central glutamatergic circuits. Here, we describe the characterization of two novel N-aryl piperazine mGlu5 positive allosteric modulators (PAMs): 2-(4-(2-(benzyloxy)acetyl)piperazin-1-yl)benzonitrile (VU0364289) and 1-(4-(2,4-difluorophenyl)piperazin-1-yl)-2-((4-fluorobenzyl)oxy)ethanone (DPFE). VU0364289 and DPFE induced robust leftward shifts in the glutamate concentration-response curves for Ca(2+) mobilization and extracellular signal-regulated kinases 1 and 2 phosphorylation. Both PAMs displayed micromolar affinity for the common mGlu5 allosteric binding site and high selectivity for mGlu5. VU0364289 and DPFE possessed suitable pharmacokinetic properties for dosing in vivo and produced robust dose-related effects in reversing amphetamine-induced hyperlocomotion, a preclinical model predictive of antipsychotic-like activity. In addition, DPFE enhanced acquisition of contextual fear conditioning in rats and reversed behavioral deficits in a mouse model of NMDAR hypofunction. In contrast, DPFE had no effect on reversing apomorphine-induced disruptions of prepulse inhibition of the acoustic startle reflex. These mGlu5 PAMs also increased monoamine levels in the prefrontal cortex, enhanced performance in a hippocampal-mediated memory task, and elicited changes in electroencephalogram dynamics commensurate with procognitive effects. Collectively, these data support and extend the role for the development of novel mGlu5 PAMs for the treatment of psychosis and cognitive deficits observed in individuals with schizophrenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807069PMC
http://dx.doi.org/10.1124/jpet.113.206623DOI Listing

Publication Analysis

Top Keywords

n-aryl piperazine
8
metabotropic glutamate
8
glutamate receptor
8
positive allosteric
8
allosteric modulators
8
glutamatergic circuits
8
vu0364289 dpfe
8
mglu5 pams
8
mglu5
6
dpfe
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!