Charge transfer in E. coli DNA photolyase: understanding polarization and stabilization effects via QM/MM simulations.

J Phys Chem B

Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute for Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany.

Published: September 2013

We study fast hole transfer events in E. coli DNA photolyase, a key step in the photoactivation process, using a multiscale computational method that combines nonadiabatic propagation schemes and linear-scaling quantum chemical methods with molecular mechanics force fields. This scheme allows us to follow the time-dependent evolution of the electron hole in an unbiased fashion; that is, no assumptions about hole wave function localization, time scale separation, or adiabaticity of the process have to be made beforehand. DNA photolyase facilitates an efficient long-range charge transport between its flavin adenine dinucleotide (FAD) cofactor and the protein surface via a chain of evolutionary conserved Trp residues on the sub-nanosecond time scale despite the existence of multiple potential trap states. By including a large number of aromatic residues along the charge transfer pathway into the quantum description, we are able to identify the main pathway among alternative possible routes. The simulations show that charge transfer, which is extremely fast in this protein, occurs on the same time scale as the protein response to the electrostatic changes; that is, time-scale separation as often presupposed in charge transfer studies seems to be inappropriate for this system. Therefore, coupled equations of motion, which propagate electrons and nuclei simultaneously, appear to be necessary. The applied computational model is shown to capture the essentials of the reaction kinetics and thermodynamics while allowing direct simulations of charge transfer events on their natural time scale.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp406319bDOI Listing

Publication Analysis

Top Keywords

charge transfer
20
time scale
16
dna photolyase
12
coli dna
8
transfer events
8
simulations charge
8
charge
6
transfer
5
transfer coli
4
photolyase understanding
4

Similar Publications

A new Donor-Acceptor type pyrazinacene derivative (1) featuring strong ICT was synthesized by linking electron-donating triphenylamine (TPA) and electron-accepting CN groups via a pyrazinacene core. The compound exhibits a dramatic color change from greenish blue to red-violet upon selective recognition of naphthalene (3) to form a 1:1 co-crystal (1•3). This color change is induced by intermolecular CT between pyrazinacene and naphthalene's aromatic moieties, driven by π-hole···π interactions.

View Article and Find Full Text PDF

Liposomal Formulations: A Recent Update.

Pharmaceutics

December 2024

Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India.

Liposome-based drug delivery technologies have showed potential in enhancing medication safety and efficacy. Innovative drug loading and release mechanisms highlighted in this review of next-generation liposomal formulations. Due to poor drug release kinetics and loading capacity, conventional liposomes have limited clinical use.

View Article and Find Full Text PDF

Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.

View Article and Find Full Text PDF

Benzo[1,2-b:6,5-b']dithiophene-4,5-diamine: A New Fluorescent Probe for the High-Sensitivity and Real-Time Visual Monitoring of Phosgene.

Sensors (Basel)

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.

The detection of highly toxic chemicals such as phosgene is crucial for addressing the severe threats to human health and public safety posed by terrorist attacks and industrial mishaps. However, timely and precise monitoring of phosgene at a low cost remains a significant challenge. This work is the first to report a novel fluorescent system based on the Intramolecular Charge Transfer (ICT) effect, which can rapidly detect phosgene in both solution and gas phases with high sensitivity by integrating a benzo[1,2-b:6,5-b']dithiophene-4,5-diamine (BDTA) probe.

View Article and Find Full Text PDF

Field implementations of fully underground sensor networks face many practical challenges that have limited their overall adoption. Power management is a commonly cited issue, as operators are required to either repeatedly excavate batteries for recharging or develop complex underground power infrastructures. Prior works have proposed wireless inductive power transfer (IPT) as a potential solution to these power management issues, but misalignment is a persistent issue in IPT systems, particularly in applications involving moving vehicles or obscured (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!