Calcitonin gene-related peptide (CGRP) released from perivascular sensory nerves plays a role in the regulation of vascular tone. Indeed, electrical stimulation of the perivascular sensory out-flow in pithed rats produces vasodepressor responses, which are mainly mediated by CGRP release. This study investigated the potential role of dopamine D1 -like and D2 -like receptors in the inhibition of these vasodepressor responses. For this purpose, male Wistar pithed rats (pre-treated i.v. with 25 mg/kg gallamine and 2 mg/kg min. hexamethonium) received i.v. continuous infusions of methoxamine (20 μg/kg min.) followed by physiological saline (0.02 ml/min.), the D1 -like receptor agonist SKF-38393 (0.1-1 μg/kg min.) or the D2 -like receptor agonist quinpirole (0.03-10 μg/kg min.). Under these conditions, electrical stimulation (0.56-5.6 Hz; 50 V and 2 ms) of the thoracic spinal cord (T9 -T12 ) resulted in frequency-dependent vasodepressor responses which were (i) unchanged during the infusions of saline or SKF-38393 and (ii) inhibited during the infusions of quinpirole (except at 0.03 μg/kg min.). Moreover, the inhibition induced by 0.1 μg/kg min. quinpirole (which failed to inhibit the vasodepressor responses elicited by i.v. bolus injections of exogenous α-CGRP; 0.1-1 μg/kg) was (i) unaltered after i.v. treatment with 1 ml/kg of either saline or 5% ascorbic acid and (ii) abolished after 300 μg/kg (i.v.) of the D2 -like receptor antagonists haloperidol or raclopride. These doses of antagonists (enough to completely block D2 -like receptors) essentially failed to modify per se the electrically induced vasodepressor responses. In conclusion, our results suggest that quinpirole-induced inhibition of the vasodepressor sensory CGRPergic out-flow is mainly mediated by pre-junctional D2 -like receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bcpt.12122 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!