Brain electrical activity related to working memory was recorded at 15 scalp electrodes during a visuospatial delayed response task. Participants (N = 18) touched the remembered position of a target on a computer screen after either a 1 or 8 sec delay. These memory trials were compared to sensory trials in which the target remained present throughout the delay and response periods. Distractor stimuli identical to the target were briefly presented during the delay on 30% of trials. Responses were less accurate in memory than sensory trials, especially after the long delay. During the delay slow potentials developed that were significantly more negative in memory than sensory trials. The difference between memory and sensory trials was greater at anterior than posterior electrodes. On trials with distractors, the slow potentials generated by memory trials showed further enhancement of negativity, whereas there were minimal effects on accuracy of performance. The results provide evidence that engagement of visuospatial working memory generates slow wave negativity with a timing and distribution consistent with frontal activation. Enhanced brain activity associated with working memory is required to maintain performance in the presence of distraction.

Download full-text PDF

Source
http://dx.doi.org/10.1162/jocn.1997.9.6.743DOI Listing

Publication Analysis

Top Keywords

working memory
16
sensory trials
16
slow potentials
12
memory sensory
12
memory
9
visuospatial working
8
trials
8
memory trials
8
delay
5
effects memory
4

Similar Publications

Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.

View Article and Find Full Text PDF

Background: Respiratory motion during radiotherapy (RT) may reduce the therapeutic effect and increase the dose received by organs at risk. This can be addressed by real-time tracking, where respiration motion prediction is currently required to compensate for system latency in RT systems. Notably, for the prediction of future images in image-guided adaptive RT systems, the use of deep learning has been considered.

View Article and Find Full Text PDF

Objective: Professional bodies recommend the use of performance validity tests (PVTs) to aid the interpretation of scores obtained in neuropsychological assessments, but base rates of failure differ according to neurological diagnosis and the associated impairments. This review summarises the PVT literature in people with epilepsy with the aim of establishing base rates of PVT failure and the factors associated with PVT performance in this population.

Methods: Ovid and PubMed databases were searched for studies reporting PVT test performance in people with epilepsy.

View Article and Find Full Text PDF

Social networks are increasingly taking over daily life, creating a volume of unsecured data and making it very difficult to capture safe data, especially in times of crisis. This study aims to use a Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM)-based hybrid model for health monitoring and health crisis forecasting. It consists of efficiently retrieving safe content from multiple social media sources.

View Article and Find Full Text PDF

Objective: Difficulty updating information in working memory has been proposed to underlie ruminative thinking in individuals with anorexia nervosa (AN). However, evidence regarding updating difficulties in AN remains inconclusive, particularly among adolescents. It has been proposed that exposure to negative emotion and disorder-salient stimuli may uniquely influence updating in AN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!