NarE is an arginine-specific mono-ADP-ribosyltransferase identified in Neisseria meningitidis that requires the presence of iron in a structured cluster for its enzymatic activities. In this study, we show that NarE can perform auto-ADP-ribosylation. This automodification occurred in a time- and NAD-concentration-dependent manner; was inhibited by novobiocin, an ADP-ribosyltransferase inhibitor; and did not occur when NarE was heat inactivated. No reduction in incorporation was evidenced in the presence of high concentrations of ATP, GTP, ADP-ribose, or nicotinamide, which inhibits NAD-glycohydrolase, impeding the formation of free ADP-ribose. Based on the electrophoretic profile of NarE on auto-ADP-ribosylation and on the results of mutagenesis and mass spectrometry analysis, the auto-ADP-ribosylation appeared to be restricted to the addition of a single ADP-ribose. Chemical stability experiments showed that the ADP-ribosyl linkage was sensitive to hydroxylamine, which breaks ADP-ribose-arginine bonds. Site-directed mutagenesis suggested that the auto-ADP-ribosylation site occurred preferentially on the R(7) residue, which is located in the region I of the ADP-ribosyltransferase family. After auto-ADP-ribosylation, NarE showed a reduction in ADP-ribosyltransferase activity, while NAD-glycohydrolase activity was increased. Overall, our findings provide evidence for a novel intramolecular mechanism used by NarE to regulate its enzymatic activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.13-229955 | DOI Listing |
Commun Dis Intell (2018)
January 2025
World Health Organisation Collaborating Centre for STI and AMR, Sydney and Neisseria Reference Laboratory, Department of Microbiology, NSW Health Pathology, The Prince of Wales Hospital, Randwick, 2031, NSW Australia.
Erratum to 2024;48. (doi: 10.33321/cdi.
View Article and Find Full Text PDFIJID Reg
March 2025
Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
Objectives: is a significant pathogen causing invasive meningococcal disease, posing clinical and public health concerns worldwide. This study aimed to investigate the genetic characteristics of clinical isolates at Okayama University Hospital in Japan.
Methods: Between 2018 and 2023, five clinical strains were isolated, of which three were subjected to the antimicrobial susceptibility testing and whole genetic analysis using MiSeq platform (Illumina, San Diego, CA, USA).
Pediatr Infect Dis J
November 2024
Department of Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey.
Background: The prevalence of meningococcal carriage and serogroup distribution is crucial for assessing the epidemiology of invasive meningococcal disease, forecasting outbreaks and formulating potential immunization strategies. Following the meningococcal carriage studies conducted in Turkey in 2016 and 2018, we planned to re-evaluate meningococcal carriage in children, adolescents and young adults during the COVID-19 pandemic period.
Methods: In the MENINGO-CARR-3 study, we collected nasopharyngeal samples from 1585 participants 0-24 years of age, across 9 different centers in Turkey.
Vaccine
January 2025
Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Canada. Electronic address:
Neisseria gonorrhoeae, which causes the sexually transmitted infection gonorrhea and Neisseria meningitidis, a leading cause of bacterial meningitis and septicemia, are closely related human-restricted pathogens that inhabit distinct primary mucosal niches. While successful vaccines against invasive meningococcal disease have been available for decades, the rapid rise in antibiotic resistance has led to an urgent need to develop an effective gonococcal vaccine. Several surface antigens are shared among these two pathogens, making cross-species protection an exciting prospect.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!