Lysosomal enzymes function optimally at low pH; as accumulation of waste material contributes to cell aging and disease, dysregulation of lysosomal pH may represent an early step in several pathologies. Here, we demonstrate that stimulation of the P2X7 receptor (P2X7R) for ATP alkalinizes lysosomes in cultured human retinal pigmented epithelial (RPE) cells and impairs lysosomal function. P2X7R stimulation did not kill RPE cells but alkalinized lysosomes by 0.3 U. Receptor stimulation also elevated cytoplasmic Ca(2+); Ca(2+) influx was necessary but not sufficient for lysosomal alkalinization. P2X7R stimulation decreased access to the active site of cathepsin D. Interestingly, lysosomal alkalinization was accompanied by a rise in lipid oxidation that was prevented by P2X7R antagonism. Likewise, the autofluorescence of phagocytosed photoreceptor outer segments increased by lysosomal alkalinization was restored 73% by a P2X7R antagonist. Together, this suggests that endogenous autostimulation of the P2X7R may oxidize lipids and impede clearance. The P2X7R was expressed on apical and basolateral membranes of mouse RPE; mRNA expression of P2X7R and extracellular ATP marker NTPDase1 was raised in RPE tissue from the ABCA4(-/-) mouse model of Stargardt's retinal degeneration. In summary, P2X7R stimulation raises lysosomal pH and impedes lysosomal function, suggesting a possible role for overstimulation in diseases of accumulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804754PMC
http://dx.doi.org/10.1096/fj.13-236166DOI Listing

Publication Analysis

Top Keywords

lysosomal alkalinization
16
p2x7r stimulation
12
lysosomal
9
p2x7r
9
lipid oxidation
8
p2x7 receptor
8
rpe cells
8
lysosomal function
8
stimulation
5
alkalinization lipid
4

Similar Publications

Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group.

View Article and Find Full Text PDF

Acid-responsive singlet oxygen nanodepots.

Chem Sci

December 2024

Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China

The singlet oxygen carrier addresses the challenges of traditional photodynamic therapy (PDT), which relies on the presence of oxygen within solid tumors and struggles with light penetration issues. However, the inability to control the release of singlet oxygen has hindered precise treatment applications. Here, we introduce an acid-responsive singlet oxygen nanodepot (aSOND) designed to overcome this limitation.

View Article and Find Full Text PDF

In the context of global warming, heat stress poses a threat to aquatic organisms. In the present study, a comprehensive analysis in hepatopancreas from Procambarus clarkii was conducted to examine the histology, physiological changes, and transcriptome alterations after exposed at 32 and 37 ℃ for 24 and 72 h, respectively, with 26 ℃ as the control group. The results demonstrated that the survival rate of P.

View Article and Find Full Text PDF

Diverse agents targeting (macro)autophagy, a critical metabolic stress response in cancer cells, have been proposed for cancer therapy. In previous studies, we showed that NNC-55-0396 (NNC) induces glioblastoma cell death by activating the Unfolded Protein Response (UPR) of ER stress and increasing cytosolic Ca levels. Here, we report that NNC affects both ends of the autophagy process, causing extensive cytoplasmic vacuolation.

View Article and Find Full Text PDF

Autophagy-activating aluminum hydroxide nanovaccine for enhanced antigen presentation and anti-tumor immunity.

J Control Release

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China. Electronic address:

Lymph node (LN) targeting and antigen presentation by antigen-presenting cells (APCs) are critical factors affecting the immune responses induced by tumor vaccines. Autophagy activation promotes MHC class I and II antigen presentation in APCs. To enhance antigen presentation in LNs, we developed an aluminum hydroxide nanovaccine that simultaneously incorporates the autophagy-activating peptide Beclin-1 and the antigenic protein OVA (B/O@AN nanovaccine) through layer-by-layer electrostatic interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!