Background: Observational and experimental studies suggest that diets rich in cruciferous vegetables and glucosinolates may reduce the risk of cancer and cardiovascular disease (CVD).
Objective: We tested the hypothesis that a 12-wk dietary intervention with high-glucoraphanin (HG) broccoli would modify biomarkers of CVD risk and plasma metabolite profiles to a greater extent than interventions with standard broccoli or peas.
Design: Subjects were randomly assigned to consume 400 g standard broccoli, 400 g HG broccoli, or 400 g peas each week for 12 wk, with no other dietary restrictions. Biomarkers of CVD risk and 347 plasma metabolites were quantified before and after the intervention.
Results: No significant differences in the effects of the diets on biomarkers of CVD risk were found. Multivariate analyses of plasma metabolites identified 2 discrete phenotypic responses to diet in individuals within the HG broccoli arm, differentiated by single nucleotide polymorphisms associated with the PAPOLG gene. Univariate analysis showed effects of sex (P < 0.001), PAPOLG genotype (P < 0.001), and PAPOLG genotype × diet (P < 0.001) on the plasma metabolic profile. In the HG broccoli arm, the consequence of the intervention was to reduce variation in lipid and amino acid metabolites, tricarboxylic acid (TCA) cycle intermediates, and acylcarnitines between the 2 PAPOLG genotypes.
Conclusions: The metabolic changes observed with the HG broccoli diet are consistent with a rebalancing of anaplerotic and cataplerotic reactions and enhanced integration of fatty acid β-oxidation with TCA cycle activity. These modifications may contribute to the reduction in cancer risk associated with diets that are rich in cruciferous vegetables. This trial was registered at clinicaltrials.gov as NCT01114399.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743733 | PMC |
http://dx.doi.org/10.3945/ajcn.113.065235 | DOI Listing |
Background: Clonal hematopoiesis of indeterminate potential (CHIP) is the age-related presence of expanded somatic clones secondary to leukemogenic driver mutations and is associated with cardiovascular (CV) disease and mortality. We sought to evaluate relationships between CHIP with cardiometabolic diseases and incident outcomes in high-risk individuals.
Methods: CHIP genotyping was performed in 8469 individuals referred for cardiac catheterization at Duke University (CATHGEN study) to identify variants present at a variant allele fraction (VAF) ≥2%.
Eur J Prev Cardiol
January 2025
Amsterdam UMC location Vrije Universiteit Amsterdam, Department of General Practice Medicine, De Boelelaan 1117, Amsterdam, The Netherlands.
Aims: To investigate if adding ECG abnormalities as a predictor improves the performance of incident CVD-risk prediction models for people with type 2 diabetes (T2D).
Methods: We evaluated the four major prediction models that are recommended by the guidelines of the American College of Cardiology/American Heart Association and European Society of Cardiology, in 11,224 people with T2D without CVD (coronary heart disease, heart failure, stroke, thrombosis) from the Hoorn Diabetes Care System cohort (1998-2018). Baseline measurements included CVD-risk factors and ECG recordings coded according to the Minnesota Classification as no, minor or major abnormalities.
Stem Cell Res Ther
January 2025
Department of Medicine, Veterans Affairs Medical Center, Washington, DC, USA.
Introduction: Effects of Dapagliflozin (Dapa) and Dapagliflozin-Saxagliptin combination (Combo) was examined on peripheral blood derived CD34 + Hematopoetic Stem Cells (HSCs) as a cellular CVD biomarker. Both Dapa (a sodium-glucose co-transporter 2 or SGLT2, receptor inhibitor) and Saxagliptin (a Di-peptydl-peptidase-4 or DPP4 enzyme inhibitor) are commonly used type 2 diabetes mellitus or T2DM medications, however the benefit of using the combination has not been evaluated for cardio-renal risk assessment, in a real-life practice setting, compared to a placebo.
Hypothesis: We hypothesized that Dapa will improve the outcomes when compared to placebo and the Combo maybe even more beneficial.
BMC Public Health
January 2025
School of Public Health, Southeast University, Nanjing. 87 Dingjiaqiao Road, Nanjing, China.
Background: Triglyceride-glucose (TyG) index was regarded as a cost-efficient and reliable clinical surrogate marker for insulin resistance (IR), which was significantly correlated with cardiovascular disease (CVD). However, the TyG index and incident CVD in non-diabetic hypertension patients remains uncertain. The aim of study was to explore the impact of TyG index level and variability on risk of CVD among non-diabetic hypertension patients.
View Article and Find Full Text PDFObjectives: Cardiovascular disease (CVD) remains a leading cause of morbidity and mortality globally, influenced by a complex interplay of risk factors including lipid disorders and insulin resistance (IR). The triglyceride-glucose (TyG) index and the triglyceride to high-density lipoprotein cholesterol (TG/HDL) ratio have emerged as potential indicators for assessing cardiovascular risk. This study aimed to evaluate the predictive value of hypertriglyceridemia, the TyG index, and the TG/HDL ratio for mortality and CVD occurrence within an Iranian population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!