Increasing cleavage specificity and activity of restriction endonuclease KpnI.

Nucleic Acids Res

Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India, Department of Chemistry, New York University, NY, USA, Department of Physics, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany, New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India.

Published: November 2013

Restriction enzyme KpnI is a HNH superfamily endonuclease requiring divalent metal ions for DNA cleavage but not for binding. The active site of KpnI can accommodate metal ions of different atomic radii for DNA cleavage. Although Mg(2+) ion higher than 500 μM mediates promiscuous activity, Ca(2+) suppresses the promiscuity and induces high cleavage fidelity. Here, we report that a conservative mutation of the metal-coordinating residue D148 to Glu results in the elimination of the Ca(2+)-mediated cleavage but imparting high cleavage fidelity with Mg(2+). High cleavage fidelity of the mutant D148E is achieved through better discrimination of the target site at the binding and cleavage steps. Biochemical experiments and molecular dynamics simulations suggest that the mutation inhibits Ca(2+)-mediated cleavage activity by altering the geometry of the Ca(2+)-bound HNH active site. Although the D148E mutant reduces the specific activity of the enzyme, we identified a suppressor mutation that increases the turnover rate to restore the specific activity of the high fidelity mutant to the wild-type level. Our results show that active site plasticity in coordinating different metal ions is related to KpnI promiscuous activity, and tinkering the metal ion coordination is a plausible way to reduce promiscuous activity of metalloenzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834813PMC
http://dx.doi.org/10.1093/nar/gkt734DOI Listing

Publication Analysis

Top Keywords

metal ions
12
active site
12
promiscuous activity
12
high cleavage
12
cleavage fidelity
12
cleavage
8
dna cleavage
8
ca2+-mediated cleavage
8
fidelity mutant
8
specific activity
8

Similar Publications

Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.

View Article and Find Full Text PDF

This study highlights the importance of developing sensitive and selective sensors for use in pharmaceutical applications for the first time. A novel iron(III)-complex, constructed from unsymmetrical tetradentate NNN'O type Schiff base ligand (E)-3-((6-aminopyridin-2-yl)imino)-1-phenyl butane-1-one (LH) and its structure of it characterized by using various spectroscopic techniques such as FT-IR, UV-Vis, elemental analysis, conductivity, magnetic susceptibility measurements and the TGA method. The correlation of all results revealed that the coordination of the (LH) with the metal ion in a molar ratio of 1:1 leads to the formation of an octahedral geometry around the metal ions.

View Article and Find Full Text PDF

Among the various cations, the Fe ion is one of the most critical transition metal ions in living cells for many cellular functions and enzymatic activities. The decrease or overloading of Fe can lead to different disruptions in humans. Also, Fe, highly toxic, is very common in all industrial wastewater.

View Article and Find Full Text PDF

Supercycle Al-Doped ZnMgO Alloys via Atomic Layer Deposition for Quantum Dot Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

Department of Photonics and Nanoelectronics, and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea.

Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides.

View Article and Find Full Text PDF

A cationic N-heterocyclic phosphenium (NHP) iron tetracarbonyl complex was synthesised from the free cation and its behaviour towards various anionic reactants studied. Reactions with fluoride, chloride, and hydride sources proceeded under attachment of the anion at phosphorus to yield Fe(CO)-complexes of neutral diazaphospholenes, while bromide and iodide reacted under addition of the anion at the metal and decarbonylation to yield NHP iron halides. Reactions with amides and organometallics were unselective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!