Versican G1 domain-containing fragments (VG1Fs) have been identified in extracts from the dermis in which hyaluronan (HA)-versican-fibrillin complexes are found. However, the molecular assembly of VG1Fs in the HA-versican-microfibril macrocomplex has not yet been elucidated. Here, we clarify the role of VG1Fs in the extracellular macrocomplex, specifically in mediating the recruitment of HA to microfibrils. Sequential extraction studies suggested that the VG1Fs were not associated with dermal elements through HA binding properties alone. Overlay analyses of dermal tissue sections using the recombinant versican G1 domain, rVN, showed that rVN deposited onto the elastic fiber network. In solid-phase binding assays, rVN bound to isolated nondegraded microfibrils. rVN specifically bound to authentic versican core protein produced by dermal fibroblasts. Furthermore, rVN bound to VG1Fs extracted from the dermis and to nondenatured versican but not to fibrillin-1. Homotypic binding of rVN was also seen. Consistent with these binding properties, macroaggregates containing VG1Fs were detected in high molecular weight fractions of sieved dermal extracts and visualized by electron microscopy, which revealed localization to microfibrils at the microscopic level. Importantly, exogenous rVN enhanced HA recruitment both to isolated microfibrils and to microfibrils in tissue sections in a dose-dependent manner. From these data, we propose that cleaved VG1Fs can be recaptured by microfibrils through VG1F homotypical interactions to enhance HA recruitment to microfibrils.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790016 | PMC |
http://dx.doi.org/10.1074/jbc.M113.456947 | DOI Listing |
Mol Microbiol
April 2022
Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología. CSIC, Madrid, Spain.
Plus-stranded RNA viruses replicate in the cytosol of infected cells, in membrane-bound replication complexes. We previously identified double membrane vesicles (DMVs) in the cytoplasm of cells infected with Berne virus (BEV), the prototype member of the Torovirus genus (Nidovirales Order). Our previous analysis by transmission electron microscopy suggested that the DMVs form a reticulovesicular network (RVN) analogous those described for the related severe acute respiratory syndrome coronavirus (SARS-CoV-1).
View Article and Find Full Text PDFJ Biol Chem
October 2013
From the Department of Advanced Medicine and.
Versican G1 domain-containing fragments (VG1Fs) have been identified in extracts from the dermis in which hyaluronan (HA)-versican-fibrillin complexes are found. However, the molecular assembly of VG1Fs in the HA-versican-microfibril macrocomplex has not yet been elucidated. Here, we clarify the role of VG1Fs in the extracellular macrocomplex, specifically in mediating the recruitment of HA to microfibrils.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 1993
Department of Medicine, Duke University Medical Center, Durham NC 27710.
The cell attachment activity of vitronectin has been ascribed to an Arg-Gly-Asp (RGD) sequence near the amino terminus. To verify the importance of the RGD sequence for cell binding, we created RAD and RGE vitronectin mutants and also deleted either the somatomedin B (delta S-rVN) or heparin (delta H-rVN) binding domains. These mutants were expressed as fusion proteins, purified using Ni+2 affinity chromatography, and assayed for cell attachment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!