In the real world, diffusion-limited reactions in chemistry and biology mostly occur in crowded environments, such as macromolecular complex formation in the cell. Despite the paramount importance of such phenomena, theoretical approaches still mainly rely on the Smoluchowski theory, only valid in the infinite dilution limit. In this paper we introduce a novel theoretical framework to describe the encounter rate and the stationary density profiles for encounters between an immobilized target and a fluid of interacting spherical particles, valid in the local density approximation. A comparison with numerical simulations performed for a fluid of hard spheres and square well attractive hard spheres confirms the accuracy of our treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/25/37/375104DOI Listing

Publication Analysis

Top Keywords

diffusion-limited reactions
8
crowded environments
8
local density
8
density approximation
8
hard spheres
8
reactions crowded
4
environments local
4
approximation real
4
real diffusion-limited
4
reactions chemistry
4

Similar Publications

Electrochemical Behaviors of Ultramicro Triangular Pipettes.

Anal Chem

December 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Ultramicro pipettes with circular orifices have practically become common probes in exploring the microscopic world, yet the versatility of differently shaped pipettes is undermined in the pore family. Herein, ultramicro triangular pipettes with a pseudotriangular-shaped orifice were fabricated by laser-pulling triangular quartz capillaries and characterized by microscopic and electrochemical methods. Then, the differences in the electrochemical behaviors of triangular and circular pores were revealed through experiments and simulations.

View Article and Find Full Text PDF

Cooperative Multiscale-Assembly for Directional and Hierarchical Growth of Highly Oriented Porous Organic Cage Single-Crystal Microtubes and Arrays.

Angew Chem Int Ed Engl

December 2024

MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.

The directional assembly of porous organic molecules into long-range ordered architectures, featuring controlled hierarchical porosity and oriented pore channels with defined spatial arrangements, is a fundamental challenge in chemistry and materials science. Herein, using porous organic cages as starting units, we present a cooperative multiscale-assembly strategy enabling the simultaneous alignment of pore channels and directional hierarchical growth in a single step. At the microscopic level, we employed double solvents to manipulate the intermolecular packing of microporous tetrahedral [4+6] imine cages (CC1 and CC3), resulting in pore channel orientation.

View Article and Find Full Text PDF

Photoelectrochemical (PEC) CO reduction using a photocathode is an attractive method for making valuable chemical products due to its simplicity and lower overpotential requirements. However, previous PEC processes have often been diffusion-limited leading to low production rates of the CO reduction reaction, due to inefficient gas diffusion through the liquid electrolyte to the catalyst surface, particularly at high current densities. In this study, a gas-permeable photocathode in a continuous flow PEC reactor is incorporated, which facilitates the direct supply of CO gas to the photocathode-electrolyte interface, unlike dark reaction-based flow reactors.

View Article and Find Full Text PDF

Theoretical Insight into Antioxidant Mechanism of Caffeic Acid Against Hydroperoxyl Radicals in Aqueous Medium at Different pH-Thermodynamic and Kinetic Aspects.

Int J Mol Sci

November 2024

Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.

In this study, the DFT/M062X/PCM method was applied to investigate thermodynamic and kinetic aspects of reactions involved in possible mechanisms of antioxidant activity of caffeic acid against HOO radicals in aqueous medium at different pH values. Kinetic parameters of the reactions involved in HAT (Hydrogen Atom Transfer), RAF (Radical Adduct Formation), and SET (Single Electron Transfer) mechanisms, including reaction energy barriers and bimolecular rate constants, were determined, and identification and characterization of stationary points along the reaction pathways within HAT and RAF mechanisms were performed. Inspection of geometrical parameters and spin densities of the radical products formed within HAT and RAF mechanisms revealed that they are stabilized by hydrogen bonding interactions and the odd electron originated through the reaction with the HOO radical is spread over the entire molecule, resulting in significant radical stabilization.

View Article and Find Full Text PDF

We show that the resolution-dependent loss of bimolecular reactions in spatiotemporal Reaction-Diffusion Master Equations (RDMEs) is in agreement with the mean-field Collins-Kimball (C-K) theory of diffusion-limited reaction kinetics. The RDME is a spatial generalization of the chemical master equation, which enables studying stochastic reaction dynamics in spatially heterogeneous systems. It uses a regular Cartesian grid to partition space into locally well-mixed reaction compartments and treats diffusion as a jump reaction between neighboring grid cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!