Red wine polyphenols (RWP) induce nitric oxide (NO) and endothelium-derived hyperpolarization (EDH)-mediated coronary vasodilatation involving the redox-sensitive PI3-kinase/Akt-dependent pathway in the endothelium. However, there is a gap of knowledge in explaining how bioactive polyphenols initialize their signalling pathway in endothelial cells. Here, we investigated the hypothesis that flavonoids act subsequently to their entry into the endothelium via the flavonoid membrane transporter bilitranslocase (TC 2.A.65.1.1). Thus, vascular reactivity studies were performed using isolated porcine coronary artery rings. We separately determined the NO- and EDH-mediated components of the relaxation in the presence of specific inhibitors. In either case, bilitranslocase antibodies significantly reduced the relaxations of coronary artery rings induced by RWP. Furthermore, bilitranslocase antibodies significantly reduced RWP-induced phosphorylation levels of Akt and eNOS, assessed in cultured endothelial cells from porcine coronary arteries by Western blot analysis. The present findings indicate that bilitranslocase-mediated membrane transport substantially contributes to the initial step of RWP-induced coronary vasodilatation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3fo60160aDOI Listing

Publication Analysis

Top Keywords

membrane transport
8
red wine
8
coronary vasodilatation
8
endothelial cells
8
porcine coronary
8
coronary artery
8
artery rings
8
bilitranslocase antibodies
8
antibodies reduced
8
coronary
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!