Soluble factors from bone marrow endothelial cells regulate differentiation and proliferation of hematopoietic and endothelial lineages and embryonic stem cells.

Sheng Li Xue Bao

Department of Physiology, Xiangya Medical School of Central South University, Changsha 410078, China; Benaroya Research Institute, Departments of Biological Structure and Ophthalmology, University of Washington, Seattle, WA 98195, USA. E-mail:

Published: August 2013

We have established a bone marrow endothelial cell line. This review focuses on the elucidation and analysis of the effects of this bone marrow endothelial cell-conditioned medium (BMEC-CM) on the differentiation and proliferation of hematopoietic and endothelial progenitors as well as embryonic stem cells (ESCs). We will review that (1) BMEC-CM promotes proliferation and differentiation of hematopoietic lineage; (2) BMEC-CM promotes proliferation and differentiation of endothelial lineage; (3) BMEC-CM induces differentiation of hematopoietic stem cells/progenitors into endothelial progenitors; and (4) BMEC-CM induces differentiation of ESCs into hematopoietic cells and endothelial cells. We conclude that the soluble factors secreted by BMECs are able to support the proliferation and differentiation of hematopoietic and endothelium lineages. Moreover, these soluble factors induce hematopoietic cells to differentiate to endothelial cells, and induce ESCs to differentiate towards both endothelial cells and hematopoietic cells. Therefore, this work provides evidence that a close relationship involved in the development of hematopoietic and endothelial lineage. This disclosure will be beneficial for therapy strategy in the treatment of ischemic and tumor diseases, and improve our understanding of the relationship between hematopoietic and endothelial lineages.

Download full-text PDF

Source

Publication Analysis

Top Keywords

endothelial cells
16
hematopoietic endothelial
16
soluble factors
12
bone marrow
12
endothelial
12
marrow endothelial
12
proliferation differentiation
12
differentiation hematopoietic
12
hematopoietic cells
12
hematopoietic
10

Similar Publications

Cancer-associated fibroblasts (CAFs) are intrinsic components of the tumor microenvironment that promote cancer progression and metastasis. Through an unbiased integrated analysis of gastric tumor grade and stage, we identified a subset of proangiogenic CAFs characterized by high podoplanin (PDPN) expression, which are significantly enriched in metastatic lesions and secrete chemokine (CC-motif) ligand 2 (CCL2). Mechanistically, PDPN(+) CAFs enhance angiogenesis by activating the AKT/NF-κB signaling pathway.

View Article and Find Full Text PDF

Ultraviolet (UV)-induced DNA mutations produce genetic drivers of cutaneous melanoma initiation and numerous neoantigens that can trigger anti-tumor immune responses in the host. Consequently, melanoma cells must rapidly evolve to evade immune detection by simultaneously modulating cell-autonomous epigenetic mechanisms and tumor-microenvironment interactions. Angiogenesis has been implicated in this process; although an increase of vasculature initiates the immune response in normal tissue, solid tumors manage to somehow enhance blood flow while preventing immune cell infiltration.

View Article and Find Full Text PDF

It is becoming more broadly accepted that human-based models are needed to better understand the complexities of the human nervous system and its diseases. The recently developed human brain organotypic culture model is one highly promising model that requires the involvement of neurosurgeons and neurosurgical patients. Studies have investigated the electrophysiological properties of neurons in such human tissues, but the maintenance of other cell types within explanted brain remains largely unknown.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLS) are lymphoid formations that develop in non-lymphoid tissues during chronic inflammation, autoimmune diseases, and cancer. Accurate identification and quantification of TLS in tissue can provide crucial insights into the immune response of several disease processes including antitumor immune response. TLS are defined as aggregates of T cells, B cells and dendritic cells.

View Article and Find Full Text PDF

Disorders in pulmonary vascular integrity are a prominent feature in many lung diseases. Paracrine signaling is highly enriched in the lung and plays a crucial role in regulating vascular homeostasis. However, the specific local cell-cell crosstalk signals that maintain pulmonary microvascular stability in adult animals and humans remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!