We report molecular aggregate formation of TTBC (1,1',3,3'-tetraethyl-5,5',6,6'-tetrachlorobenzimidazolocarbocyanine) in submicrometer-sized PVA (poly(vinyl alcohol)) fibers by electrospinning. The formation of the molecular aggregate is examined by solution and instrumental parameters of electrospinning. The precursor solution of PVA/TTBC, in the range of 0.016-0.065 wt % is subjected to electrospinning under an electrical field ranging from 0.95 to 1.81 kV cm(-1). Both randomly deposited and uniaxially aligned fibers are achieved by using two parallel-positioned metal strips as counter electrode. Photoluminescence and polarized Fourier transform infrared spectroscopies are employed to determine spectral properties of the fibers. H-aggregates are formed within the electrospun fibers, regardless of their alignment, and H- and J-type aggregates coexist in the alternative spin-coated and the cast films. A strongly polarized photoluminescence emission is observed in the direction of uniaxially aligned fibers as a result of the orientation of the H-aggregates along the fiber axis. We demonstrate that electrospinning is a process capable of forming and orienting TTBC aggregates during the structural development of the polymer/dye nanofibers. These fibrous films may potentially find applications in optics and electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp404977d | DOI Listing |
Int J Biol Macromol
January 2025
College of Engineering and Technology, Northeast Forestry University, Harbin 150040, PR China. Electronic address:
The demand for extended shelf life and food safety in the food industry continues to rise. At the same time, the environmental burden of traditional plastic packaging materials is becoming increasingly serious. Therefore, in this study, an intelligent bilayer film with a pH-sensitive inner indicator film based on Artemisia Sphaerocephala Krasch.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Science and Technology, Sari Agricultural Science and Natural Resources University, PO BOX 578, Sari, Mazandaran, Iran.
This study aimed to develop bead-free nanofibers for effective omega-3 encapsulation using optimal mixing ratios of whey protein isolate (WPI)/polyvinyl alcohol (PVA) blends via electrospinning method. Various WPI-PVA ratios (100:0, 90:10, 80:20, 70:30, 60:40, 50:50 v/v) were examined for surface tension, viscosity, and conductivity. SEM images revealed uneven nanofibers with bead at 90:10 and 80:20 ratios, while the 70:30 ratio produced uniform and bead-free nanofibers with an average diameter of 262.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China. Electronic address:
In this study, composite films were developed by encapsulating cassia oil (CO) with β-cyclodextrin through a microencapsulation technique and incorporating it into a chitosan (CS), polyvinyl alcohol (PVA) and glycerol matrix. The primary objective of the film was to inhibit bacterial growth on the surface of fresh bananas and extend their shelf life. Characterization methods were employed to evaluate the physical properties and functionality of the composite films.
View Article and Find Full Text PDFHeliyon
January 2025
A. K. M. Masud, Department of Industrial and Production Engineering (IPE), Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh.
Polymers have been ruling the packaging industry for decades due to their versatility, easy manufacturability, and low cost. The overuse of non-biodegradable plastics in food packaging has become a serious environmental concern. Multi-walled carbon nanotube (MWCNT) reinforced nanocomposites have exceptional electrical, thermal, and mechanical properties.
View Article and Find Full Text PDFSmall
January 2025
Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany.
Separators are critical components of zinc-metal batteries (ZMBs). Despite their high ionic conductivity and excellent electrolyte retention, the widely used glass fiber (GF) membranes suffer from poor mechanical stability and cannot suppress dendrite growth, leading to rapid battery failure. Contrarily, polymer-based separators offer superior mechanical strength and facilitate more homogeneous zinc (Zn) deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!