Background And Purpose: Available medications for chronic pain provide only partial relief and often cause unacceptable side effects. There is therefore a need for novel molecular targets to develop new therapeutics with improved efficacy and tolerability. Despite encouraging efficacy data in rodents with inhibitors of the neuronal glycine transporter-2 (GlyT2), there are also some reports of toxicity and their development was discontinued.

Experimental Approach: In order to clarify the possibility of targeting GlyT2 for the treatment of pain, we have used an integrated approach comprising in vitro pharmacology, selectivity, bioavailability, in vivo efficacy and safety assessment to analyse the properties and efficacy of ALX-1393 and Org-25543, the two published GlyT2 inhibitors from which in vivo data are available.

Key Results: We report that these compounds have a different set of undesirable properties that limit their usefulness as pharmacological tools. Importantly, we discover that inhibitors of GlyT2 can exert an apparent reversible or irreversible inhibition of the transporter and describe a new class of reversible GlyT2 inhibitors that preserves efficacy while avoiding acute toxicity.

Conclusions And Implications: Our pharmacological comparison of two closely related GlyT2 inhibitors with different modes of inhibition provides important insights into their safety and efficacy profiles, uncovering that in the presence of a GlyT2 mechanism-based toxicity, reversible inhibitors might allow a tolerable balance between efficacy and toxicity. These findings shed light into the drawbacks associated with the early GlyT2 inhibitors and describe a new mechanism that might serve as the starting point for new drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949653PMC
http://dx.doi.org/10.1111/bph.12343DOI Listing

Publication Analysis

Top Keywords

glyt2 inhibitors
16
glyt2
9
efficacy
8
treatment pain
8
inhibitors
7
reversible
4
reversible inhibition
4
inhibition glycine
4
glycine transporter
4
transporter glyt2
4

Similar Publications

Role of palmitoylation on the neuronal glycine transporter GlyT2.

J Neurochem

September 2024

Departamento de Biología Molecular, Instituto de Biología Molecular (IUBM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.

The neuronal glycine transporter GlyT2 removes glycine from the synaptic cleft through active Na, Cl, and glycine cotransport contributing to the termination of the glycinergic signal as well as supplying substrate to the presynaptic terminal for the maintenance of the neurotransmitter content in synaptic vesicles. Patients with mutations in the human GlyT2 gene (SLC6A5), develop hyperekplexia or startle disease (OMIM 149400), characterized by hypertonia and exaggerated startle responses to trivial stimuli that may have lethal consequences in the neonates as a result of apnea episodes. Post-translational modifications in cysteine residues of GlyT2 are an aspect of structural interest we analyzed.

View Article and Find Full Text PDF

In silico evidence of bitopertin's broad interactions within the SLC6 transporter family.

J Pharm Pharmacol

September 2024

Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, CEP 74690-900, Goiânia-GO, Brazil.

The Glycine Transporter Type 1 (GlyT1) significantly impacts central nervous system functions, influencing glycinergic and glutamatergic neurotransmission. Bitopertin, the first GlyT1 inhibitor in clinical trials, was developed for schizophrenia treatment but showed limited efficacy. Despite this, bitopertin's repositioning could advance treating various pathologies.

View Article and Find Full Text PDF

Glycine Transporter 2 (GlyT2) inhibitors have shown considerable potential as analgesics for the treatment of neuropathic pain but also display considerable side effects. One potential source of side effects is irreversible inhibition. In this study, we have characterized the mechanism of ORG25543 inhibition of GlyT2 by first considering three potential ligand binding sites on GlyT2-the substrate site, the vestibule allosteric site and the lipid allosteric site.

View Article and Find Full Text PDF

Chronic pain is a complex condition that remains resistant to current therapeutics. We previously synthesized a series of -acyl amino acids (NAAAs) that inhibit the glycine transporter, GlyT2, some of which are also positive allosteric modulators of glycine receptors (GlyRs). In this study, we have synthesized a library of NAAAs that contain a phenylene ring within the acyl tail with the objective of improving efficacy at both GlyT2 and GlyRs and also identifying compounds that are efficacious as dual-acting modulators to enhance glycine neurotransmission.

View Article and Find Full Text PDF

PDZ interaction of the GABA transporter GAT1 with the syntenin-1 in Neuro-2a cells.

Neurochem Int

May 2023

Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia. Electronic address:

The GABA transporter GAT1 regulates brain inhibitory neurotransmission and it is considered a potential therapeutic target for the treatment of wide spectrum of neurological diseases including epilepsy, stroke and autism. Syntenin-1 binds to syntaxin 1A, which is known to regulate the plasma membrane insertion of several neurotransmitter transporters. Previously, a direct interaction of syntenin-1 with the glycine transporter GlyT2 was reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!