Objectives: Porous HA scaffolds are promising materials for tissue engineering because they offer a tridimensional support and serve as template for cell proliferation and at last tissue formation. Engipore provide a natural 3D scaffold with organic fibrous material in bone. However, how this material alters osteoblast activity to promote bone formation is poorly understood.
Materials And Methods: To study how Engipore can induce osteoblast differentiation in mesenchymal stem cells, the expression levels of bone related genes and mesenchymal stem cells marker were analyzed.
Results: Engipore causes a significant induction of osteoblast transcriptional factors like SP7 and RUNX2 and of the bone-related gene osteocalcin (BGLAP). The expression of CD105 was not significantly changed in stem cells treated with Engipore with respect to untreated cells, while SSP1 (osteopontin) was significantly down expressed thus reducing osteoclast activity.
Conclusions: The obtained results can be relevant to better understand the molecular mechanism of bone regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723274 | PMC |
http://dx.doi.org/10.1016/j.sdentj.2010.07.007 | DOI Listing |
Stem Cells
January 2025
Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe city, Hyogo 650-0017, Japan.
Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Laboratory of Genome Dynamics in the Immune, INSERM UMR 116, Équipe Labellisée LIGUE 2023, Paris, France.
Oncostatin M (OSM) is a cytokine with the unique ability to interact with both the OSM receptor (OSMR) and the leukemia inhibitory factor receptor (LIFR). On the other hand, OSMR interacts with IL31RA to form the interleukin-31 receptor. This intricate network of cytokines and receptors makes it difficult to understand the specific function of OSM.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
Purpose: Regulating intraocular pressure (IOP), mainly via the trabecular meshwork (TM), is critical in developing glaucoma. Whereas current treatments aim to lower IOP, directly targeting the dysfunctional TM tissue for therapeutic intervention has proven challenging. In our study, we utilized Dexamethasone (Dex)-treated TM cells as a model to investigate how extracellular vesicles (EVs) from immortalized corneal stromal stem cells (imCSSCs) could influence ANGPTL7 and MYOC genes expression within TM cells.
View Article and Find Full Text PDFLab Chip
January 2025
Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.
A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems.
View Article and Find Full Text PDFJ Dev Biol
December 2024
Department of Neuroscience, Biomedicine and Movement-Sec. Anatomy and Histology, University of Verona, Via Le Grazie 8, 37134 Verona, Italy.
Since its first conceptualization over a century ago, the mesenchymal phenotype has traditionally been viewed as either a transient phase between successive epithelial stages or as a feature of cell types primarily devoted to structural support. However, recent findings in cancer research challenge this limited view, demonstrating that mesenchymal traits and hybrid mesenchymal/epithelial states can mark cancer cells with stem cell properties. By analyzing publicly available single-cell transcriptome datasets from early embryonic stages and adult tissues, this study aims to extend this concept beyond pathological contexts, suggesting that a partial or fully mesenchymal phenotype may represent the morphological expression of undifferentiated and multipotent states in both the developing embryo and adult organs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!