Background: Degenerative lumbar scoliosis surgery can lead to development of adjacent segment degeneration (ASD) after lumbar or thoracolumbar fusion. Its incidence, risk factors, morbidity and correlation between radiological and clinical symptoms of ASD have no consensus. We evaluated the correlation between the occurrence of radiologic adjacent segment disease and certain imperative parameters.
Materials And Methods: 98 patients who had undergone surgical correction and lumbar/thoracolumbar fusion with pedicle screw instrumentation for degenerative lumbar scoliosis with a minimum 5 year followup were included in the study. We evaluated the correlation between the occurrence of radiologic adjacent segment disease and imperative patient parameters like age at operation, sex, body mass index (BMI), medical comorbidities and bone mineral density (BMD). The radiological parameters taken into consideration were Cobb's angle, angle type, lumbar lordosis, pelvic incidence, intercristal line, preoperative existence of an ASD on plain radiograph and magnetic resonance imaging (MRI) and surgical parameters were number of the fusion level, decompression level, floating OP (interlumbar fusion excluding L5-S1 level) and posterolateral lumbar interbody fusion (PLIF). Clinical outcomes were assessed with the Visual Analogue Score (VAS) and Oswestry Disability Index (ODI).
Results: ASD was present in 44 (44.9%) patients at an average period of 48.0 months (range 6-98 months). Factors related to occurrence of ASD were preoperative existence of disc degeneration (as revealed by MRI) and age at operation (P = 0.0001, 0.0364). There were no statistically significant differences between radiological adjacent segment degeneration and clinical results (VAS, P = 0.446; ODI, P = 0.531).
Conclusions: Patients over the age of 65 years and with preoperative disc degeneration (as revealed by plain radiograph and MRI) were at a higher risk of developing ASD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745687 | PMC |
http://dx.doi.org/10.4103/0019-5413.114912 | DOI Listing |
J Mech Behav Biomed Mater
January 2025
Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA; Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
Despite the broad agreement that bone stiffness is heavily dependent on the underlying bone density, there is no consensus on a unified relationship that applies to both cancellous and cortical compartments. Bone from the two compartments is generally assessed separately, and few mechanical test data are available for samples from the transitional regions between them. In this study, we present a data-driven framework integrating experimental testing and numerical modeling of the human lumbar vertebra through an energy balance criterion, to develop a unified density-modulus relationship across the entire vertebral body, without the necessity of differentiation between trabecular and cortical regions.
View Article and Find Full Text PDFGland Surg
December 2024
Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea.
Background: A right adrenal gland may present in the form of adreno-hepatic fusion (AHF), in which the adrenal cells are interspersed among the hepatocytes without septation. This rare, naturally-occurring phenomenon may be associated with preoperative misdiagnosis. We present two cases of adrenal tumor in patients with AHF that were misdiagnosed, despite thorough preoperative work-ups.
View Article and Find Full Text PDFSci Data
January 2025
Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK.
Pituitary neuroendocrine tumors remain one of the most common intracranial tumors. While radiomic research related to pituitary tumors is progressing, public data sets for external validation remain scarce. We introduce an open dataset comprising high-resolution T1 contrast-enhanced MR scans of 136 patients with pituitary tumors, annotated for tumor segmentation and accompanied by clinical, radiological and pathological metadata.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
Manual semen evaluation methods are subjective and time-consuming. In this study, a deep learning algorithmic framework was designed to enable non-invasive multidimensional morphological analysis of live sperm in motion, improve current clinical sperm morphology testing methods, and significantly contribute to the advancement of assisted reproductive technologies. We improved the FairMOT tracking algorithm by incorporating the distance and angle of the same sperm head movement in adjacent frames, as well as the head target detection frame IOU value, into the cost function of the Hungarian matching algorithm.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China.
Programmable organization of uniform organic/inorganic functional building blocks into large-scale ordered superlattices has attracted considerable attention since the bottom-up self-organization strategy opens up a robust and universal route for designing novel and multifunctional materials with advanced applications in memory storage devices, catalysis, photonic crystals, and biotherapy. Despite making great efforts in the construction of superlattice materials, there still remains a challenge in the preparation of organic/inorganic hybrid superlattices with tunable dimensions and exotic configurations. Here, we report the spontaneous self-organization of polystyrene-tethered gold nanoparticles (AuNPs@PS) into freestanding organic/inorganic hybrid superlattices templated at the diethylene glycol-air interface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!