MicroRNAs (MiRs) are small, noncoding RNAs that regulate gene expression posttranscriptionally. In this study, we show that MiR-210 is induced by Oct-2, a key transcriptional mediator of B cell activation. Germline deletion of MiR-210 results in the development of autoantibodies from 5 mo of age. Overexpression of MiR-210 in vivo resulted in cell autonomous expansion of the B1 lineage and impaired fitness of B2 cells. Mice overexpressing MiR-210 exhibited impaired class-switched Ab responses, a finding confirmed in wild-type B cells transfected with a MiR-210 mimic. In vitro studies demonstrated defects in cellular proliferation and cell cycle entry, which were consistent with the transcriptomic analysis demonstrating downregulation of genes involved in cellular proliferation and B cell activation. These findings indicate that Oct-2 induction of MiR-210 provides a novel inhibitory mechanism for the control of B cells and autoantibody production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4162006 | PMC |
http://dx.doi.org/10.4049/jimmunol.1301289 | DOI Listing |
Life Sci
January 2025
Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha 410011, China. Electronic address:
Aims: Endometriosis development is associated with peritoneal immune microenvironment abnormality; however, the specific mechanism is uncertain. We aimed to investigate the effects and underlying mechanisms of uterine cavity-derived exosomes on macrophage polarization and endometriosis progression.
Materials And Methods: Uterine cavity-derived exosomes, miR-210-3p inhibitor or siATP5D were used to treat macrophages.
Int J Mol Sci
December 2024
Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
MicroRNAs (miRNAs) are short sequences of single-stranded non-coding RNAs that target messenger RNAs, leading to their repression or decay. Interestingly, miRNAs play a role in the cellular response to low oxygen levels, known as hypoxia, which is associated with reactive oxygen species and oxidative stress. However, the physiological implications of hypoxia-induced miRNAs ("hypoxamiRs") remain largely unclear.
View Article and Find Full Text PDFDiabetol Metab Syndr
January 2025
Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
Background And Aims: Type 2 diabetes mellitus (T2DM) is usually complicated by cardiovascular diseases, hyperglycemia, and obesity, which worsen the outcome for the patient. Since recent evidence underlines the epigenetic role of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the management of these comorbidities, this study compared the effects of these agents, namely liraglutide, semaglutide, dulaglutide, and exenatide, on miRNA regulation in the management of T2DM.
Results: GLP-1RAs modify the expression of miRNAs involved in endothelial function, sugar metabolism, and adipogenesis, including but not limited to miR-27b, miR-130a, and miR-210.
Front Genet
December 2024
Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.
Introduction: Hypoxia responses are critical for myriad physiological and pathological processes, such as development, tissue repair, would healing, and tumorigenesis. microRNAs (miRNAs) are a class of small non-coding RNAs that exert their functions by inhibiting the expression of their target genes, and miR-210 is the miRNA universally and most conspicuously upregulated by hypoxia in mammalian systems. For its relationship to hypoxia, miR-210 has been studied extensively, yet no consensus exists on the roles and mechanisms of miR-210 in human physiological processes or diseases, and we know little about genuine miR-210 target genes in humans.
View Article and Find Full Text PDFACS Omega
December 2024
Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, U.K.
Pancreatic ductal adenocarcinoma (PDAC) is one among the most lethal malignancies due to its aggressive behavior and resistance to conventional therapies. Hypoxia significantly contributes to cancer progression and therapeutic resistance of PDAC. microRNAs (miRNAs/miRs) have emerged as critical regulators of various biological processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!