Low-Pt loaded on a vanadium nitride/graphitic carbon composite as an efficient electrocatalyst for the oxygen reduction reaction.

Chemistry

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (P.R. China).

Published: October 2013

The high cost of platinum electrocatalysts for the oxygen reduction reaction (ORR) has hindered the commercialization of fuel cells. An effective support can reduce the usage of Pt and improve the reactivity of Pt through synergistic effects. Herein, the vanadium nitride/graphitic carbon (VN/GC) nanocomposites, which act as an enhanced carrier of Pt nanoparticles (NPs) towards ORR, have been synthesized for the first time. In the synthesis, the VN/GC composite could be obtained by introducing VO3 (-) and [Fe(CN)6 ](4-) ions into the polyacrylic weak-acid anion-exchanged resin (PWAR) through an in-situ anion-exchanged route, followed by carbonization and a subsequent nitridation process. After loading only 10 % Pt NPs, the resulting Pt-VN/GC catalyst demonstrates a more positive onset potential (1.01 V), higher mass activity (137.2 mA mg(-1) ), and better cyclic stability (99 % electrochemical active surface area (ECSA) retention after 2000 cycles) towards ORR than the commercial 20 % Pt/C. Importantly, the Pt-VN/GC catalyst mainly exhibits a 4 e(-) -transfer mechanism and a low yield of peroxide species, suggesting its potential application as a low-cost and highly efficient ORR catalyst in fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201300933DOI Listing

Publication Analysis

Top Keywords

vanadium nitride/graphitic
8
nitride/graphitic carbon
8
oxygen reduction
8
reduction reaction
8
fuel cells
8
pt-vn/gc catalyst
8
low-pt loaded
4
loaded vanadium
4
carbon composite
4
composite efficient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!