Respiratory virus RNA is detectable in airborne and droplet particles.

J Med Virol

School of Public Health and Community Medicine, The University of New South Wales, Sydney, New South Wales, Australia; Virology Division, Prince of Wales Hospital, Sydney, New South Wales, Australia.

Published: December 2013

Aerosol transmission routes of respiratory viruses have been classified by the WHO on the basis of equilibrium particle size. Droplet transmission is associated with particles sized >5 µm in diameter and airborne transmission is associated with particles sized ≤5 µm in diameter. Current infection control measures for respiratory viruses are directed at preventing droplet transmission, although epidemiological evidence suggests concurrent airborne transmission also occurs. Understanding the size of particles carrying viruses can be used to inform infection control procedures and therefore reduce virus transmission. This study determined the size of particles carrying respiratory viral RNA produced on coughing and breathing by 12 adults and 41 children with symptomatic respiratory infections. A modified six-stage Andersen Sampler collected expelled particles. Each stage was washed to recover samples for viral RNA extraction. Influenza A and B, parainfluenza 1, 2 and 3, respiratory syncytial virus (RSV), human metapneumovirus and human rhinoviruses (hRV) were detected using RT-PCR. On breathing, 58% of participants produced large particles (>5 µm) containing viral RNA and 80% produced small particles (≤5 µm) carrying viral RNA. On coughing, 57% of participants produced large particles containing viral RNA and 82% produced small particles containing viral RNA. Forty five percent of participants produced samples positive for hRV viral RNA and 26% of participants produced samples positive for viral RNA from parainfluenza viruses. This study demonstrates that individuals with symptomatic respiratory viral infections produce both large and small particles carrying viral RNA on coughing and breathing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmv.23698DOI Listing

Publication Analysis

Top Keywords

viral rna
36
participants produced
16
particles carrying
12
small particles
12
particles
11
rna
10
viral
10
respiratory viruses
8
droplet transmission
8
transmission associated
8

Similar Publications

We identified seven distinct coronaviruses (CoVs) in bats from Brazil, classified into 229E-related (Alpha-CoV), Nobecovirus, Sarbecovirus, and Merbecovirus (Beta-CoV), including one closely related to MERS-like CoV with 82.8% genome coverage. To accomplish this, we screened 423 oral and rectal swabs from 16 different bat species using molecular assays, RNA sequencing, and evolutionary analysis.

View Article and Find Full Text PDF

Current progress in CRISPR-Cas systems for rare diseases.

Prog Mol Biol Transl Sci

January 2025

Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India. Electronic address:

The groundbreaking CRISPR-Cas gene editing method permits exact genetic code alteration. The "CRISPR" DNA protects bacteria from viruses. CRISPR-Cas utilizes a guide RNA to steer the Cas enzyme to the genome's gene editing target.

View Article and Find Full Text PDF

Burying poultry carcasses on farms as a disposal option in crisis situations: learnings and perspectives from a field study during an avian influenza epizootic in France.

Poult Sci

January 2025

Ploufragan-Plouzané-Niort Laboratory, Epidemiology Health and Welfare Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53 22440 Ploufragan, France. Electronic address:

Appropriate disposal of dead farming animals is required to guarantee effective disease control while protecting the environment. In crisis situations, alternatives to rendering can be used, including on-farm burial. The objectives of this study were to: (i) describe the burial and monitoring protocols used on poultry farms in France in response to major avian influenza outbreaks; (ii) assess the effectiveness of the burial protocol, in terms of both technical and biosecurity aspects, and microbiological, physical and chemical changes of the buried materials and the environment over time; (iii) provide recommendations for future burial and follow-up protocols.

View Article and Find Full Text PDF

Equine influenza virus (EIV) can be transmitted by inhalation of aerosolized droplets, direct contact, and contaminated fomites. However, to our knowledge, there are no reports of the recovery of EIV from the air surrounding infected horses. Here, we evaluated whether EIV can be recovered from the air in the stalls of experimentally infected horses by using an air sampler.

View Article and Find Full Text PDF

The pathogenic potential of airborne particles carrying the SARS-CoV-2 viral genome was examined by considering the size distribution of airborne particles at given distances from the respiratory zone of an infected patient after coughing or sneezing with a focus on time, temperature, and relative humidity. The results show an association between the size distribution of airborne particles, particularly PM and PM, and the presence of viral genome in different stations affected by the distance from the respiratory zone and the passage of time. The correlation with time was strong with all the dependent factors except PM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!