A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using the AUDIT-PC to predict alcohol withdrawal in hospitalized patients. | LitMetric

Background: Alcohol withdrawal syndrome (AWS) occurs when alcohol-dependent individuals abruptly reduce or stop drinking. Hospitalized alcohol-dependent patients are at risk. Hospitals need a validated screening tool to assess withdrawal risk, but no validated tools are currently available.

Objective: To examine the admission Alcohol Use Disorders Identification Test-(Piccinelli) Consumption (AUDIT-PC) ability to predict the subsequent development of AWS among hospitalized medical-surgical patients admitted to a non-intensive care setting.

Design: Retrospective case–control study of patients discharged from the hospital with a diagnosis of AWS. All patients with AWS were classified as presenting with AWS or developing AWS later during admission. Patients admitted to an intensive care setting and those missing AUDIT-PC scores were excluded from analysis. A hierarchical (by hospital unit) logistic regression was performed and receiver-operating characteristics were examined on those developing AWS after admission and randomly selected controls. Because those diagnosing AWS were not blinded to the AUDIT-PC scores, a sensitivity analysis was performed.

Participants: The study cohort included all patients age ≥18 years admitted to any medical or surgical units in a single health care system from 6 October 2009 to 7 October 2010.

Key Results: After exclusions, 414 patients were identified with AWS. The 223 (53.9 %) who developed AWS after admission were compared to 466 randomly selected controls without AWS. An AUDIT-PC score ≥4 at admission provides 91.0 % sensitivity and 89.7 % specificity (AUC=0.95; 95 % CI, 0.94–0.97) for AWS, and maximizes the correct classification while resulting in 17 false positives for every true positive identified. Performance remained excellent on sensitivity analysis (AUC=0.92; 95 % CI, 0.90–0.93). Increasing AUDIT-PC scores were associated with an increased risk of AWS (OR=1.68, 95 % CI 1.55–1.82, p<0.001).

Conclusions: The admission AUDIT-PC score is an excellent discriminator of AWS and could be an important component of future clinical prediction rules. Calibration and further validation on a large prospectivecohort is indicated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889973PMC
http://dx.doi.org/10.1007/s11606-013-2551-9DOI Listing

Publication Analysis

Top Keywords

aws
13
aws admission
12
audit-pc scores
12
alcohol withdrawal
8
patients
8
patients admitted
8
developing aws
8
randomly selected
8
selected controls
8
sensitivity analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!