Sestrin-2 (SESN2) is a conserved antioxidant protein that is activated upon oxidative stress and protects cells against reactive oxygen species (ROS). However, the role of SESN2 in neurodegenerative diseases, especially in Parkinson's disease (PD), has not yet been elucidated. In this study, we found that expression of SESN2 is elevated in the midbrain of patients with PD. Moreover, in vitro experiments display that the drug 1-methyl-4-phenylpyridinium (MPP+) induces the expression of SESN2 in SH-SY5Y cells in a time- and dose-dependent manner. Our results show that p53 is activated by MPP+. Importantly, inhibition of p53 using small RNA interferences abolishes the increased SESN2 levels induced by MPP+, suggesting that the inductive effect of MPP+ on SESN2 is mediated by p53. Furthermore, knockdown of SESN2 using small RNA interferences promotes MPP+-related neurotoxicity by attenuating oxidative stress, mitochondrial dysfunction, and apoptosis. All these data imply that the induction of SESN2 produces a protective effect in PD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-013-0081-xDOI Listing

Publication Analysis

Top Keywords

1-methyl-4-phenylpyridinium mpp+
8
sesn2
8
oxidative stress
8
expression sesn2
8
small rna
8
rna interferences
8
mpp+
5
upregulation sestrin-2
4
sestrin-2 expression
4
p53
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!