Arterial and venous specification is critical for establishing and maintaining a functioning vascular system, and defects in key arteriovenous signaling pathways including VEGF (vascular endothelial growth factor) lead to congenital arteriopathies. The activities of VEGF, are in part controlled by heparan sulfate (HS) proteoglycans, significant components of the endothelial glycocalyx. The level of 6-O sulfation on HS polysaccharide chains, that mediate the interaction between HS and VEGFA, is edited at the cell surface by the enzyme SULF1. We investigated the role of sulf1 in vascular development. In zebrafish sulf1 is expressed in the head and tail vasculature, corresponding spatially and temporally with vascular development. Targeted knockdown of sulf1 by antisense morpholinos resulted in severe vascular patterning and maturation defects. 93 % of sulf1 morphants show dysmorphogenesis in arterial development leading to occlusion of the distal aorta and lack of axial and cranial circulation. Co-injection of vegfa165 mRNA rescued circulatory defects. While the genes affecting haematopoiesis are unchanged, expression of several arterial markers downstream of VegfA signalling such as notch and ephrinB2 are severely reduced in the dorsal aorta, with a concomitant increase in expression of the venous markers flt4 in the dorsal aorta of the morphants. Furthermore, in vitro, lack of SULF1 expression downregulates VEGFA-mediated arterial marker expression, confirming that Sulf1 mediates arterial specification by regulating VegfA165 activity. This study provides the first in vivo evidence for the integral role of the endothelial glycocalyx in specifying arterial-venous identity, vascular patterning and arterial integrity, and will help to better understand congenital arteriopathies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10456-013-9379-0DOI Listing

Publication Analysis

Top Keywords

heparan sulfate
8
sulf1
8
enzyme sulf1
8
arterial venous
8
congenital arteriopathies
8
endothelial glycocalyx
8
vascular development
8
vascular patterning
8
dorsal aorta
8
arterial
7

Similar Publications

Objective: This study investigated pathogenic role and mechanism of extracellular histone H4 during oleic acid (OA)-induced acute respiratory distress syndrome (ARDS).

Methods: ARDS was induced by intravenous injection of OA in mice, and evaluated by blood gas, pathological analysis, lung edema, and survival rate. Heparan sulfate (HS) degradation was evaluated using immunofluorescence and flow cytometry.

View Article and Find Full Text PDF

Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin.

View Article and Find Full Text PDF
Article Synopsis
  • Heparanase is a key enzyme in the breakdown of heparan sulfate, contributing to tumor growth and metastasis, making it a target for cancer treatments.
  • Researchers synthesized specific trisaccharides and a tetrasaccharide that inhibit heparanase activity, focusing on glycol-split versions as potential inhibitors.
  • Studies using STD NMR and molecular docking revealed that these glycol-split trisaccharides had stronger binding and inhibitory effects against heparanase compared to their intact forms, providing insight into their mechanisms.
View Article and Find Full Text PDF

Evolution of SARS-CoV-2 spike trimers towards optimized heparan sulfate cross-linking and inter-chain mobility.

Sci Rep

December 2024

Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany.

The heparan sulfate (HS)-rich extracellular matrix (ECM) serves as an initial interaction site for the homotrimeric spike (S) protein of SARS-CoV-2 to facilitate subsequent docking to angiotensin-converting enzyme 2 (ACE2) receptors and cellular infection. More recent variants, notably Omicron, have evolved by swapping several amino acids to positively charged residues to enhance the interaction of the S-protein trimer with the negatively charged HS. However, these enhanced interactions may reduce Omicron's ability to move through the HS-rich ECM to effectively find ACE2 receptors and infect cells, raising the question of how to mechanistically explain HS-associated viral movement.

View Article and Find Full Text PDF

A Drosophila Model of Mucopolysaccharidosis IIIB.

Genetics

December 2024

Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA.

Article Synopsis
  • MPS IIIB is a rare disorder caused by defects in the enzyme NAGLU, leading to brain dysfunction due to the accumulation of heparan sulfate in lysosomes.
  • Researchers created a Drosophila (fruit fly) model with various NAGLU mutations to study the disorder's effects on activity and sleep patterns, revealing significant hyperactivity and sleep issues.
  • The study found that gene expression changes in mutant flies are linked to problems with nervous system development and synaptic function, suggesting that this fly model could help develop future therapies for MPS IIIB.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!