Anthracyclines find vital uses in the treatment of solid tumors and other kind of malignancies. A typical side effect observed with few agents of this class is dose-dependent cardiotoxicity. Doxorubicin is one such agent which backs the generation of free radicals through metabolism of its quinone structure. This effect combined with induction of apoptotic and necrotic pathways leads to the development of irreversible cardiotoxicity. Reports showing the cardioprotective effects of felodipine have been published in the past. We chose to evaluate protective effect of felodipine in acute cardiotoxicity in rats induced by single dose of doxorubicin. Felodipine was assessed against doxorubicin-induced cardiotoxicity and we found that felodipine not only improves cardiac marker enzymes (P<0.001 for LDH; P<0.01 for CK-MB) but also prevents damage to myocardial tissue (20.61% necrosed area in doxorubicin intoxication; 11.52% necrosed area in felodipine treated group). Activation of apoptotic pathways is decelerated which is indicated by a significant reduction in myocardial caspase-3 activity (P<0.05) following felodipine pretreatment. Felodipine pretreatment was able to maintain normal cardiac morphology and histoarchitecture. Gravimetric analysis revealed beneficial effects following felodipine pretreatment. Abnormalities seen in the ECG after doxorubicin treatment were normalized to a significant extent (ST interval normalization was significant at P<0.01) in felodipine treated rats. In itself, felodipine was not found to have any detrimental effects on the myocardium or hemodynamic parameters of rats. Findings of the study suggest that pretreatment with felodipine prevents doxorubicin induced cardiotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.etap.2013.07.007 | DOI Listing |
J Imaging
December 2024
Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
Radiation therapy (RT) is widely used to treat thoracic cancers but carries a risk of radiation-induced heart disease (RIHD). This study aimed to detect early markers of RIHD using machine learning (ML) techniques and cardiac MRI in a rat model. SS.
View Article and Find Full Text PDFJ Cardiothorac Surg
December 2024
Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China.
Background: Aconitine has cardiotoxicity, but the mechanism of cardiotoxicity induced by aconitine is limited. The aim of this study was to investigate the mechanism of myocardial injury induced by aconitine.
Methods: Using aconitine, ROS inhibitor N-acetylcysteine(NAC), the autophagy activitor Rapamycin (Rap) or the P38/MAPK pathway activitor Dehydrocorydaline treats H9C2 cells.
Cell Biol Toxicol
December 2024
Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing On the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China.
Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates both oxidative stress and mitochondrial biogenesis. Our previous study reported the cardioprotection of calycosin against triptolide toxicity through promoting mitochondrial biogenesis by activating nuclear respiratory factor 1 (NRF1), a coregulatory effect contributed by Nrf2 was not fully elucidated. This work aimed at investigating the involvement of Nrf2 in mitochondrial protection and elucidating Nrf2/NRF1 signaling crosstalk on amplifying the detoxification of calycosin.
View Article and Find Full Text PDFToxicol Rep
December 2024
Pharmacology Department, Medical Research and Clinical Studies Institute - National Research Centre, Dokki, Giza 12622, Egypt.
Doxorubicin (DOX) is a cytotoxic anthracycline used to treat a variety of cancers. Cardiotoxicity, hepatotoxicity, and nephrotoxicity are adverse effects of DOX, that limit prognosis. The study aims to determine if diosmin (DIOS) and coenzyme Q10 (CoQ10) alone or in combination protect rats against DOX-induced liver and kidney damage.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China.
Chemotherapeutic drugs often fail to localize efficiently to tumors when administered intravenously, causing off-target effects. This study proposes an autologous erythrocyte (ER)-anchoring strategy to improve chemotherapy efficacy and reduce side effects. Utilizing a modified hemodialysis instrument, a closed-system drug-transfer device was developed for autologous ER procurement and immunogenicity mitigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!