Rotationally-resolved spectroscopy of the donor bending mode of (D2O)2.

J Phys Chem A

†Department of Chemistry and ‡Department of Astronomy, University of Illinois, Urbana, Illinois 61801, United States.

Published: December 2013

High-resolution spectra of the intramolecular bending modes of deuterated water dimer, (D2O)2, have been measured using a quantum cascade laser based cavity ringdown spectrometer. Two perpendicular bands have been observed and are assigned as the K(a) = 1 ← 0 and K(a) = 2 ← 1 bands of the bending mode of the hydrogen bond donor. The tunneling splittings in the complex are well-resolved, and it is found that excitation of the donor bend has little effect on tunneling of the hydrogen bond acceptor, but causes significant perturbations on the tunneling motion which exchanges the roles of hydrogen bond donor and acceptor. The presence of this perturbation has prevented a detailed assignment of the tunneling levels in the excited state at this time. An accurate value for the band center of the donor bend is calculated to be 1182.2 cm(-1), which is in good agreement with previous theoretical calculations performed on an ab initio potential energy surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp407102yDOI Listing

Publication Analysis

Top Keywords

hydrogen bond
12
bending mode
8
bond donor
8
donor bend
8
donor
5
rotationally-resolved spectroscopy
4
spectroscopy donor
4
donor bending
4
mode d2o2
4
d2o2 high-resolution
4

Similar Publications

The folding of the guanine repetitive region in the telomere unit into G-quadruplex (G4) by drugs has been suggested as an alternative approach for cancer therapy. Hydroxychloroquine (HCQ) and chloroquine (CQ) are two important drugs in the trial stage for cancer. Both drugs can induce the folding of telomere-guanine-rich sequences into G4 even in the absence of salt.

View Article and Find Full Text PDF

Noncovalent carbon bonding (C-bonding), a recently explored σ-hole interaction, has primarily been characterized through X-ray structural and computational studies. Evidence of C-bonds in solution is scarce, especially in highly polar solvents like DMSO where solvation effects typically overshadow weak non-covalent interactions. In this work, we present three novel spiroisatin-based -acyl hydrazones (1-3) in which C-bonds play a critical role in stabilizing the conformation in solution.

View Article and Find Full Text PDF

Using high-level quantum chemical calculations, we predicted a strong O-H⋯C interaction between the apical carbon atoms of pyramidane and its derivatives and water molecules. Analysis of calculated electrostatic potential maps showed that there are areas of strong negative potential above apical carbon atoms in all studied structures. The results of quantum chemical calculations showed that the O-H⋯C interaction between the hydrogen atom of water and the apical carbon atom of pyramidane derivatives with four -CH substituents is unexpectedly strong, Δ = -7.

View Article and Find Full Text PDF

Amorphization Stabilizes Te-based Aqueous Batteries via Confining Free Water.

Angew Chem Int Ed Engl

January 2025

Fudan University, Laboratory of Advanced Materials, Shanghai, 200433, Shanghai, CHINA.

Tellurium (Te), with its rich valence states (-2 to +6), could endow aqueous batteries with potentially high specific capacity. However, achieving complete and stable hypervalent Te0/Te4+ electrochemistry in an aqueous environment poses significant challenges, owing to the sluggish reduction kinetics, the easy dissolution of Te4+ species, and a controversial energy storage mechanism. Herein, for the first time, we demonstrate an amorphous strategy for robust aqueous TeO2/Te electrochemistry.

View Article and Find Full Text PDF

Amorphous Ni(OH) Coated Cu Dendrites with Superaerophobic Interface for Bipolar Hydrogen Production Assisted with Formaldehyde Oxidation.

Small

January 2025

State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.

Since formaldehyde oxidation reaction (FOR) can release H, it is attractive to construct a bipolar hydrogen production system consisting of FOR and hydrogen evolution reaction (HER). Although copper-based catalysts have attracted much attention due to their low cost and high FOR activity, the performance enhancement mechanism lacks in-depth investigation. Here, an amorphous-crystalline catalyst of amorphous nickel hydroxide-coated copper dendrites on copper foam (Cu@Ni(OH)/CF) is prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!