Chemical investigations into maize (Zea mays L.) kernels yielded phenolic compounds, which were structurally established using chromatographic and spectroscopic methods. The isolated phenolic compounds from maize kernel were examined in vitro for their antioxidant abilities by DPPH (2,2-diphenyl-1-picryl hydrazine) radical, OH radical scavenging activity, and reducing ability, along with α-glucosidase and xanthine oxidase (XO) inhibition. The isolated maize phenolics revealed significant xanthine oxidase and α-glucosidase inhibitory activity to that of allopurinol and acarbose in vitro and in vivo, respectively. The kinetics study with xanthine oxidase revealed competitive type of inhibition by isolated maize vanillic acid (M2), ferulic acid (M5), 3'-methoxyhirsutrin (M7), and peonidin-3-glucoside (M10) as compared to control allopurinol. Overall, with few exceptions, all the phenolic compounds from maize kernel revealed significant biological activities with all parameters examined. Also, the phenolic compounds from maize were found to be more reactive toward DPPH radical and had considerable reducing ability and OH radical scavenging activity. These findings suggest that maize kernel phenolic compounds can be considered as potential antioxidant, α-glucosidase, and XO inhibitory agents those might be further explored for the design of lead antioxidant, antidiabetic and antigout drug candidates using in vivo trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cbdd.12205 | DOI Listing |
J Food Sci Technol
January 2025
Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam, Assam 784028 India.
Edible flowers have been a part of various traditional dishes around the world. The consumption of edible flowers has been rising due to their nutritional properties, minerals, antioxidants, phenolic and bioactive compounds, therapeutic properties, and also aesthetic appeal. Along with the nutrients, some antinutrients and other chemical, biological, microbial hazards may render flowers non-edible.
View Article and Find Full Text PDFJ Food Sci Technol
January 2025
Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, U.P. 221005 India.
Unlabelled: Potato peels are one of the most under-utilized wastes which can be highly beneficial to mankind. The red potato peel powder was prepared by using tray drying and vacuum-oven drying method. The proximate analysis of red potato peel powder was conducted followed by its characterization which includes FT-IR, XRD, TGA, DSC, and SEM.
View Article and Find Full Text PDFJ Food Sci Technol
January 2025
Department of Grain Science and Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India.
Unlabelled: The potential of (), an underutilized plant rich in medicinal and nutritional value, for producing ready-to-serve (RTS) beverages was explored. The research investigated commercial processing techniques for extracting fruit juice and the impact of stabilizers such as pectin (low and high), xanthan gum, and sodium alginate on beverage quality. Sodium alginate, chosen for its sedimentation rate and sensory acceptability, was further optimized in RTS formulations.
View Article and Find Full Text PDFJ Food Sci Technol
January 2025
Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, Debrecen, 4032 Hungary.
Acacia honey was infused with basil, oregano, marjoram, dill, garlic or cinnamon at infusion rates of 0-5% by mass for a 6 months period. After removal of the infusates, macro and micro element concentrations were measured by Inductively Coupled Plasma Optical Emission Spectrometry. Total phenolic and flavonoid contents were determined spectroscopically.
View Article and Find Full Text PDFACS Omega
January 2025
School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom.
Seventeen 3-alkylaminoquinoxaline-2(1)-thiones and 3-alkyloxyquinoxaline-2(1)-thiones were prepared by a novel thionation protocol from the readily available quinoxaline-2,3-dione in excellent overall yields. This protocol starts with the chlorination of dione using thionyl chloride to give 2,3-dichloroquinoxaline followed by the reaction with equimolar amounts of -nucleophiles (primary amines and secondary amines) or -nucleophiles (phenols and alcohols) to principally afford 2-alkanamino-3-chloroquinoxalines or 2-alkyloxy-3-chloroquinoxalines, respectively. The chloroquinoxalines reacted with the thionation reagent -cyclohexyl dithiocarbamate cyclohexyl ammonium salt in ethanol under reflux to principally give the corresponding quinoxalin-2-yl cyclohexylcarbamodithioate that finally rearranges to give the corresponding thiones in 76-93% overall yields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!