The early changes of electrophoretic mobility (EPM) of murine T lymphocytes induced by structural analogues of amixine-dihydrochloryde 4,4'-bis-[2(diethylamino)ethoxy]diphenyl (compound 1) and dihydrochloryde 2-methoxycarbonil-4,4'-bis-[2(diethylamino)ethoxy]diphenyl (compound 2) were studied by electrophoresis technique. During the interval 0-2 hours all compounds increased the absolute values of EPM in comparison with control. These changes were of the same kind--distinctions were quantitative. Amixine and compound 1 during the interval 2-4 hours additionally increased the EPM. The compound 2, on the contrary, decreased the EPM. It was shown that the opposite effects of the aforementioned compounds were caused by the fact that amixine and compound 1 induce, and compound 2 does not induce IFN production in T lymphocytes in vitro. The results of our experiments are important for understanding of the mechanisms of immunomodulating effect of amixine and its structural analogues.

Download full-text PDF

Source

Publication Analysis

Top Keywords

electrophoretic mobility
8
structural analogues
8
amixine compound
8
compound induce
8
compound
6
[effects diphenyl
4
diphenyl derivatives
4
derivatives electrophoretic
4
mobility murine
4
murine lymphocytes]
4

Similar Publications

SLC10A7 regulates O-GalNAc glycosylation and Ca homeostasis in the secretory pathway: insights into SLC10A7-CDG.

Cell Mol Life Sci

January 2025

Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France.

Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented.

View Article and Find Full Text PDF

Chrysanthemum white rust (CWR), caused by Puccinia horiana Heen., is a serious disease of chrysanthemum worldwide. This disease reduces the quality and yield of Chrysanthemum morifolium, leading to significant losses for chrysanthemum growers and industries.

View Article and Find Full Text PDF

SlUPA-like, a bHLH Transcription Factor in Tomato (), Serves as the Crosstalk of GA, JA and BR.

Int J Mol Sci

December 2024

Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.

The bHLH (basic Helix-Loop-Helix) transcription factor serves as pivotal controller in plant growth and development. In a previous study, the overexpression of in L. Ailsa Craig (AC) altered the JA (Jasmonic acid) response and endogenous GA (Gibberellic acid) content.

View Article and Find Full Text PDF

Background: Tacrolimus is widely used as a first-line immunosuppressant in transplant immunology; however, its clinical application is constrained by the narrow therapeutic index and considerable interindividual variability. In this study, we identified the potential regulatory role of a novel promoter polymorphism, rs4519508 C > T, in the tacrolimus pharmacodynamic pathway.

Methods: Dual-luciferase reporter assays and bioinformatic analysis were applied to assess the impact of allelic variation.

View Article and Find Full Text PDF

Cell wall components of gut commensal bacteria stimulate peritrophic matrix formation in malaria vector mosquitoes through activation of the IMD pathway.

PLoS Biol

January 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.

The peritrophic matrix (PM) acts as a physical barrier that influences the vector competence of mosquitoes. We have previously shown that gut microbiota promotes PM formation in Anopheles stephensi, although the underlying mechanisms remain unclear. In this study, we identify that the cell wall components of gut commensal bacteria contribute to PM formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!