The demand for controlling T cell responses via dendritic cell (DC) vaccines initiated a quest for reliable and feasible DC modulatory strategies that would facilitate cytotoxicity against tumors or tolerance in autoimmunity. We studied endogenous mechanisms in developing monocyte-derived DCs (MoDCs) that can induce inflammatory or suppressor programs during differentiation, and we identified a powerful autocrine pathway that, in a cell concentration-dependent manner, strongly interferes with inflammatory DC differentiation. MoDCs developing at low cell culture density have superior ability to produce inflammatory cytokines, to induce Th1 polarization, and to migrate toward the lymphoid tissue chemokine CCL19. On the contrary, MoDCs originated from dense cultures produce IL-10 but no inflammatory cytokines upon activation. DCs from high-density cultures maintained more differentiation plasticity and can develop to osteoclasts. The cell concentration-dependent pathway was independent of peroxisome proliferator-activated receptor γ (PPARγ), a known endogenous regulator of MoDC differentiation. Instead, it acted through lactic acid, which accumulated in dense cultures and induced an early and long-lasting reprogramming of MoDC differentiation. Our results suggest that the lactic acid-mediated inhibitory pathway could be efficiently manipulated in developing MoDCs to influence the immunogenicity of DC vaccines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1300772 | DOI Listing |
Clin Transl Oncol
December 2024
Lillian S Wells Department of Neurosurgery at the University of Florida: University of Florida Lillian S Wells Department of Neurosurgery, Gainesville, FL, USA.
Glioblastoma (GBM) is one of the most common primary malignant brain tumors. Annually, there are about six instances recorded per 100,000 inhabitants. Treatment for GB has not advanced all that much.
View Article and Find Full Text PDFInflammation
December 2024
Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
Endoplasmic reticulum stress (ERs) is implicated in antitumor immunity. However, the exact role of ERs in mediating the effects of dendritic cells (DCs) is not unclear. In this study, we explored the role of exosomes derived from ER-stressed hepatocellular carcinoma (HCC) cells in the antitumor effects of DCs and the precise underlying mechanism.
View Article and Find Full Text PDFMol Neurobiol
December 2024
Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, 820 San-Nomiya, Koshigaya-Shi, Saitama, 343-8540, Japan.
Accumulation of senescent neurons in the dorsal root ganglion (DRG) is an important tissue phenotype that causes age-related degeneration of peripheral sensory nerves. Senescent neurons are neurons with arrested cell cycle that have undergone cellular senescence but remain in the tissue and play various biological roles. To understand the accumulation of senescent neurons in the DRG during aging, we aimed to elucidate the mechanism that induces cellular senescence in DRG neurons and the role of senescent DRG neurons.
View Article and Find Full Text PDFDiscov Oncol
December 2024
Department of Critical Care Medicine, The Fifth People's Hospital of Ganzhou City, Ganzhou, 341000, China.
Lung adenocarcinoma (LUAD) is a major contributor to cancer-related deaths, distinguished by its pronounced tumor heterogeneity and persistent challenges in overcoming drug resistance. In this study, we utilized single-cell RNA sequencing (scRNA-seq) to dissect the roles of programmed cell death (PCD) pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis, in shaping LUAD heterogeneity, immune infiltration, and prognosis. Among these, ferroptosis and pyroptosis were most significantly associated with favorable survival outcomes, highlighting their potential roles in enhancing anti-tumor immunity.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA.
Unlabelled: are facultative intracellular bacterial pathogens that cause foodborne disease in humans. The bacteria can use the surface protein InlA to invade intestinal epithelial cells or transcytose across M cells in the gut, but it is not well understood how the bacteria traffic from the underlying lamina propria to the draining mesenteric lymph nodes (MLN). Previous studies indicated that associated with both monocytes and dendritic cells in the intestinal lamina propria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!