AI Article Synopsis

  • Pseudohypoparathyroidism type-Ia (PHP-Ia) is caused by maternal mutations in the GNAS gene, resulting in a loss of function of Gαs, leading to resistance to parathyroid hormone (PTH) and hypocalcemia.
  • The PTH resistance in PHP-Ia manifests after early postnatal life, indicating that the silencing of the paternal Gαs allele in kidney cells occurs gradually rather than immediately after birth.
  • Studies show that while Gαs expression is mostly from the maternal allele in adulthood, both maternal and paternal alleles contribute equally at a postnatal age of 3 days, highlighting a delayed onset of PTH resistance in PHP-Ia patients.

Article Abstract

Pseudohypoparathyroidism type-Ia (PHP-Ia), characterized by renal proximal tubular resistance to parathyroid hormone (PTH), results from maternal mutations of GNAS that lead to loss of α-subunit of the stimulatory G protein (Gαs) activity. Gαs expression is paternally silenced in the renal proximal tubule, and this genomic event is critical for the development of PTH resistance, as patients display impaired hormone action only if the mutation is inherited maternally. The primary clinical finding of PHP-Ia is hypocalcemia, which can lead to various neuromuscular defects including seizures. PHP-Ia patients frequently do not present with hypocalcemia until after infancy, but it has remained uncertain whether PTH resistance occurs in a delayed fashion. Analyzing reported cases of PHP-Ia with documented GNAS mutations and mice heterozygous for disruption of Gnas, we herein determined that the manifestation of PTH resistance caused by the maternal loss of Gαs, ie, hypocalcemia and elevated serum PTH, occurs after early postnatal life. To investigate whether this delay could reflect gradual development of paternal Gαs silencing, we then analyzed renal proximal tubules isolated by laser capture microdissection from mice with either maternal or paternal disruption of Gnas. Our results revealed that, whereas expression of Gαs mRNA in this tissue is predominantly from the maternal Gnas allele at weaning (3 weeks postnatal) and in adulthood, the contributions of the maternal and paternal Gnas alleles to Gαs mRNA expression are equal at postnatal day 3. In contrast, we found that paternal Gαs expression is already markedly repressed in brown adipose tissue at birth. Thus, the mechanisms silencing the paternal Gαs allele in renal proximal tubules are not operational during early postnatal development, and this finding correlates well with the latency of PTH resistance in patients with PHP-Ia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926912PMC
http://dx.doi.org/10.1002/jbmr.2070DOI Listing

Publication Analysis

Top Keywords

renal proximal
16
pth resistance
16
paternal gαs
12
gαs
10
gαs silencing
8
parathyroid hormone
8
gαs expression
8
resistance patients
8
disruption gnas
8
early postnatal
8

Similar Publications

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Proteinuria and tubular cells: Plasticity and toxicity.

Acta Physiol (Oxf)

February 2025

Department of Medicine, Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.

Aim: Proteinuria is the most robust predictive factors for the progression of chronic kidney disease (CKD), and interventions targeting proteinuria reduction have shown to be the most effective nephroprotective treatments to date. While glomerular dysfunction is the primary source of proteinuria, its consequences extend beyond the glomerulus and have a profound impact on tubular epithelial cells. Indeed, proteinuria induces notable phenotypic changes in tubular epithelial cells and plays a crucial role in driving CKD progression.

View Article and Find Full Text PDF

: The parallel stent graft endovascular aortic repair (PGEVAR) technique is an off-the-shelf option used for elective complex abdominal aortic aneurysm repair with acceptable outcome results, as reported so far. The PGEVAR technique, using chimney or periscope parallel grafts, can also be used for patients with ruptured complex abdominal aortic aneurysms. However, only few data about the mid- to long-term outcomes are available.

View Article and Find Full Text PDF

Dent disease: Clinical Practice Recommendations.

Nephrol Dial Transplant

January 2025

Veltishev Research Clinical Institute for Pediatrics & Pediatric Surgery, Pirogov Russian National Research Medical University, Moscow, Russia.

Dent disease is a rare X-linked tubulopathy that is characterized by low-molecular-weight (LMW) proteinuria associated with hypercalciuria, which may lead to nephrolithiasis, nephrocalcinosis, and kidney failure between the 3rd and the 5th decades of life in 30-80% of affected males. The disease is most often associated with various manifestations of proximal tubular dysfunction. Affected individuals may present nephrotic range proteinuria which may be misinterpreted and cause diagnostic delay.

View Article and Find Full Text PDF

Dose-related effects of eugenol: exploring renal functionality and morphology in healthy Wistar rats.

Food Chem Toxicol

January 2025

Laboratory of Structural Biology, Departament of Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Department of Veterinary, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil. Electronic address:

Eugenol has pharmacological properties, but its impact on renal function is limitedly studied. Thus, this study evaluated the effects of eugenol at 10, 20, and 40 mg Kg, administered via gavage for 60 days, on histological, biochemical, oxidative, and proteomic parameters in rat kidneys. Adult Wistar rats treated with 10 mg Kg of eugenol had kidneys with low total antioxidant capacity, high nitric oxide content, and high percentual of blood vessels, with no damage to renal function or morphology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!