Implications for osmorespiratory compromise by anatomical remodeling in the gills of Arapaima gigas.

Anat Rec (Hoboken)

Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rodovia Washington Luís, KM 235 Caixa Postal 676, São Carlos, SP, Brasil; Departamento de Morfologia, Universidade Federal do Amazonas, Avenida General, Rodrigo Octávio Jordão Ramos, 3000. 69.077-000, Manaus, Amazonas, Brazil.

Published: October 2013

The gill structure of the Amazonian fish Arapaima gigas, an obligatory air breather, was investigated during its transition from water breathing to the obligatory air breathing modes of respiration. The gill structure of A. gigas larvae is similar to that of most teleost fish; however, the morphology of the gills changes as the fish grow. The main morphological changes in the gill structure of a growing fish include the following: (1) intense cell proliferation in the filaments and lamellae, resulting in increasing epithelial thickness and decreasing interlamellar distance; (2) pillar cell system atrophy, which reduces the blood circulation through the lamellae; (3) the generation of long cytoplasmic processes from the epithelial cells into the intercellular space, resulting in continuous and sinuous paracellular channels between the epithelial cells of the filament and lamella that may be involved in gas, ion, and nutrient transport to epithelial cells; and (4) intense mitochondria-rich cell (MRC) proliferation in the lamellar epithelium. All of these morphological changes in the gills contribute to a low increase of the respiratory surface area for gas exchange and an increase in the water-blood diffusion distance increasing their dependence on air-breathing as fish developed. The increased proliferation of MRCs may contribute to increased ion uptake, which favors the regulation of ion content and pH equilibrium.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.22758DOI Listing

Publication Analysis

Top Keywords

gill structure
12
epithelial cells
12
arapaima gigas
8
obligatory air
8
morphological changes
8
fish
5
implications osmorespiratory
4
osmorespiratory compromise
4
compromise anatomical
4
anatomical remodeling
4

Similar Publications

De novo transcriptome assembly of the Perna viridis: A novel invertebrate model for ecotoxicological studies.

Sci Data

January 2025

Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603 Ernakulam North PO., Kochi, 682018, Kerala, India.

Mussels, particularly Perna viridis, are vital sentinel species for toxicology and biomonitoring in environmental health. This species plays a crucial role in aquaculture and significantly impacts the fisheries sector. Despite the ecological and economic importance of this species, its omics resources are still scarce.

View Article and Find Full Text PDF

Aquatic toxicology, as a result of industrial and agrieqcultural effluences, has become a global concern impacting not only the well-being of aquatic organisms but human health as well. The current study evaluated the impact of four toxic trace elements (TTEs) Cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) in three organs (liver, gills, and muscles) of five fish species viz, Rita rita, Sperata sarwari, Wallago attu, Mastacembelus armatus, and Cirrhinus mrigala collected from right and left banks of Punjnad headworks during winter, spring, and summer. We investigated the accumulation (mg/kg) of these TTEs in fish in addition to the human health risk assessment.

View Article and Find Full Text PDF

Background: Freshwater fish are affected with much parasitic diseases, among the most common are Henneguyosis caused by myxozoans of the genus Henneguya, which exhibit great diversity in fish from South America, particularly in the Brazilian Amazon.

Purpose: In this present study, we describe the morphological and phylogenetic aspects of the small ribosomal subunit (SSU rDNA) of two new species of Henneguya infecting the gills from Hypophthalmus marginatus, a freshwater catfish from the Amazon.

Methods: In 148 specimens, has been observed cyst formation in different regions of the gills, intrafilamentary and intralamellar.

View Article and Find Full Text PDF

Hennegoides Africanus sp. nov. from Kadey River in Cameroon.

Acta Parasitol

January 2025

Laboratory of Parasitology and Ecology, Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.

Purpose: Fish are susceptible to various parasitic infections, with Myxozoa emerging as a major group. A taxonomic study of Myxozoa is essential for the rapid diagnosis of species potentially responsible for epizootic diseases.

Methods: The studied fish was collected from the Kadey River, a tributary of the Sangha River in the Congo Basin in Cameroon, and parasitologically dissected.

View Article and Find Full Text PDF

Morphological and Molecular Characterization of Two Species of Ligophorus (Monogenea: Ancyrocephalidae) in Mullets from the Yucatán Peninsula, with Comments on the Geographical Distribution of L. mediterraneus.

Acta Parasitol

January 2025

Departamento de Sistemas y Procesos Naturales, Escuela Nacional de Estudios Superiores Unidad Mérida, Km 4.5 Carretera Mérida-Tetiz, Ucú, Yucatán, C.P. 97357, Mexico.

Background: Ligophorus Euzet and Suriano, 1977 is a specious genus of ancyrocephalid monogeneans parasitizing mullets around the world, with most species distributed in the western Pacific and the Mediterranean Sea. Only nine out of the 62 species in the genus have been reported from the Americas, and from them, only two have been sequenced.

Methods: We analyzed two species of Mugil (L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!