Phonon density-of-states and related thermodynamic properties of the α-quartz-type and rutile-type germanium dioxide (GeO2) are investigated from density functional perturbation theory. The significant density-of-states at the low frequencies in the α-quartz-type GeO2 are at the origin of (i) its lower internal energy below 250 K, (ii) its smaller free energy, (iii) its higher entropy, (iv) its lower Debye temperature and (v) its larger positive linear thermal expansion, with respect to the rutile-type GeO2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp52741g | DOI Listing |
PLoS Comput Biol
January 2025
Department of Physics, University of Toronto, Toronto, Ontario, Canada.
Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.
View Article and Find Full Text PDFActa Bioeng Biomech
September 2024
Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland.
: The synthesis of fluoridated apatite consists of several stages, among which the heat treatment has a significant impact on the physical and chemical properties. The present study aims to elucidate the influence of two different sintering methods on fluoride-substituted apatite properties. : For this purpose, a two F-substituted apatites were produced by heat treatment in different ways called "rapid sintering" and "slow sintering".
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.
View Article and Find Full Text PDFChem Biodivers
January 2025
SRM Institute of Science and Technology - NCR Campus, chemistry, Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Camp, India, 241405, Modinagar, INDIA.
This review paper provides an inclusive overview of the intricate interactions amid ionic liquids (ILs) and essential biomacromolecules, mainly Hemoglobin (Hb), Bovine Serum Albumin (BSA), Human Serum Albumin (HSA), and Calf Thymus-DNA (CT-DNA). ILs have recently become a topic of great attention because of their inimitable physicochemical properties and potential uses in different fields. The review systematically explores the binding mechanisms, thermodynamics, and structural changes induced by ILs on Hb, BSA, HSA, and CT-DNA using spectroscopic, thermodynamic, and computational techniques.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.
Carbon dioxide capture has attracted worldwide attention because CO emissions cause global warming and exacerbate climate change. Ionic liquids (ILs) have good application prospects in carbon capture due to their excellent properties, which provide a new chance to develop efficient and reversible carbon capture systems. This paper reviews the recent progress in CO chemical absorption by ILs, such as N-site, O-site, C-site, and multi-site functionalized ILs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!