2-D-to-3-D registration is critical and fundamental in image-guided interventions. It could be achieved from single image using paired point correspondences between the object and the image. The common assumption that such correspondences can readily be established does not necessarily hold for image guided interventions. Intraoperative image clutter and an imperfect feature extraction method may introduce false detection and, due to the physics of X-ray imaging, the 2-D image point features may be indistinguishable from each other and/or obscured by anatomy causing false detection of the point features. These create difficulties in establishing correspondences between image features and 3-D data points. In this paper, we propose an accurate, robust, and fast method to accomplish 2-D-3-D registration using a single image without the need for establishing paired correspondences in the presence of false detection. We formulate 2-D-3-D registration as a maximum likelihood estimation problem, which is then solved by coupling expectation maximization with particle swarm optimization. The proposed method was evaluated in a phantom and a cadaver study. In the phantom study, it achieved subdegree rotation errors and submillimeter in-plane ( X- Y plane) translation errors. In both studies, it outperformed the state-of-the-art methods that do not use paired correspondences and achieved the same accuracy as a state-of-the-art global optimal method that uses correct paired correspondences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479265PMC
http://dx.doi.org/10.1109/TBME.2013.2278619DOI Listing

Publication Analysis

Top Keywords

single image
12
2-d-3-d registration
12
false detection
12
paired correspondences
12
image
8
point features
8
correspondences
7
robustness accuracy
4
accuracy feature-based
4
feature-based single
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!