Chromosomal abnormalities are relevant causes of human infertility, affecting 2 -14 % of infertile males. Patients with seminal anomalies could be affected by improper meiotic recombination and increased sperm chromosome aneuploidy. Since the transmission of a haploid chromosomal asset is fundamental for embryo vitality and development, the study of sperm chromosomes has become fundamental because intracytoplasmic sperm injection allows fertilization in cases of severe male infertility.In this chapter we summarize the data on the incidence of sperm aneuploidy, detected by fluorescence in situ hybridization (FISH), in infertile men with normal or abnormal karyotype. The possibility of reducing sperm chromosomal imbalance is also reported.Among control males, the lowest aneuploidy rate was detected (range: 0.09 -0.14 % for autosomes; 0.04 -0.10 % for gonosomes). In infertile patients with normal karyotype, the severity of semen alteration is correlated with the frequency of aneuploidy, particularly for X and Y chromosomes. Among patients with abnormal karyotype, 47,XXY and 47,XYY carriers showed a high variability of sperm aneuploidy both for gonosomes and autosomes. In Robertsonian translocation carriers, the increase in aneuploidy rate was particularly evident for total sex disomy, and resulted mainly from interchromosomal effect (ICE). In reciprocal translocation carriers, a high percentage of unbalanced sperm (approximately 50 %) was detected, perhaps mostly related to ICE.Sperm chromosomal constitution could be analyzed to obtain more accurate information about the causes of male infertility. It would be worthwhile to evaluate the benefits of a therapy with recombinant Follicle Stimulating Hormone (rFSH) on sperm chromosome segregation in selected infertile males.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4614-7783-9_3 | DOI Listing |
Nucleic Acids Res
January 2025
Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.
View Article and Find Full Text PDFPlant J
January 2025
College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
Glutathione reductase (GR) maintains the cellular redox state by reducing oxidized glutathione to glutathione (GSH), which regulates antioxidant defense. Additionally, GR plays an essential role in photosynthesis; however, the mechanism by which GR regulates photosystem II (PSII) is largely unknown. We identified six, three, and three GR genes in Gossypium hirsutum, Gossypium arboreum, and Gossypium raimondii, respectively.
View Article and Find Full Text PDFInt J Dev Biol
January 2025
Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland.
Male infertility is a multifactorial condition for which the underlying causes frequently remain undefined. Genetic factors have long been associated with male fertility. However, many of them are poorly or not at all characterized and their biological functions are unknown.
View Article and Find Full Text PDFUnlabelled: Autoimmune regulator (AIRE), a transcription factor expressed by medullary thymic epithelial cells, is required for shaping the self-antigen tolerant T cell receptor repertoire. Humans with mutations in suffer from Autoimmune Polyglandular Syndrome Type 1 (APS-1). Among many symptoms, men with APS-1 commonly experience testicular insufficiency and infertility, but the mechanisms causing infertility are unknown.
View Article and Find Full Text PDFRadiol Case Rep
March 2025
Department of Radiology, Makassed hospital, Jerusalem, Palestine.
Zinner syndrome (ZS) is a rare congenital urological condition characterized by a triad of ipsilateral seminal vesicle cysts, unilateral renal agenesis, and ejaculatory duct obstruction, first described in 1914. This case report details the presentation and management of a 27-year-old male diagnosed with ZS following a 2-month history of urinary frequency, hesitancy, dysuria, and painful ejaculation. Physical examination revealed a left lower abdominal mass, and imaging confirmed the classic findings of ZS, including unilateral renal agenesis, an enlarged seminal vesicle cyst, and an ectopic ureter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!