Wnt signaling plays a central role in mammary stem cell (MaSC) homeostasis and in breast cancer. In particular, epigenetic alterations at different members of the Wnt pathway have been identified among triple-negative, basal-like breast cancers. Previously, we developed a mouse model for metaplastic breast adenocarcinoma, a subtype of triple-negative breast cancer, by targeting a hypomorphic mutations in the endogenous Apc gene (Apc (1572T/+)). Here, by employing the CD24 and CD29 cell surface antigens, we have identified a subpopulation of mammary cancer stem cells (MaCSCs) from Apc (1572T/+) capable of self-renewal and differentiation both in vivo and in vitro. Moreover, immunohistochemical analysis of micro- and macrolung metastases and preliminary intravenous transplantation assays suggest that the MaCSCs underlie metastasis at distant organ sites. Expression profiling of the normal and tumor cell subpopulations encompassing MaSCs and CSCs revealed that the normal stem cell compartment is more similar to tumor cells than to their own differentiated progenies. Accordingly, Wnt signaling appears to be active in both the normal and cancer stem cell compartments, although at different levels. By comparing normal with cancer mouse mammary compartments, we identified a MaCSC gene signature able to predict outcome in breast cancer in man. Overall, our data indicate that constitutive Wnt signaling activation affects self-renewal and differentiation of MaSCs leading to metaplasia and basal-like adenocarcinomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/carcin/bgt279 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!