The effects of physiological concentrations of K+ on Mn2+ accumulation were compared in rat glial cells and neurons in culture. Increasing the K+ concentration in growth medium increased significantly the Mn2+ level of the cultivated cells, with glial cells more affected than neurons. Ethanol markedly increased the Mn2+ accumulation within glia but not within neurons while ouabain caused inhibition of Mn2+ uptake with neurons and glial cells. A modulation of the total protein synthesis by Mn2+ and ethanol level in the growth medium was observed with glial cells. These data suggest that the mechanisms involved in Mn2+ accumulation in glial cells are different from those present in neurons. Moreover, the results are consistent with the hypothesis that Mn2+ plays a regulatory role in glial cell metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00973657 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!