Impact of environmental conditions on the form and function of Candida albicans biofilms.

Eukaryot Cell

Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, USA.

Published: October 2013

Candida albicans, like other pathogens, can form complex biofilms on a variety of substrates. However, as the number of studies of gene regulation, architecture, and pathogenic traits of C. albicans biofilms has increased, so have differences in results. This suggests that depending upon the conditions employed, biofilms may vary widely, thus hampering attempts at a uniform description. Gene expression studies suggest that this may be the case. To explore this hypothesis further, we compared the architectures and traits of biofilms formed in RPMI 1640 and Spider media at 37°C in air. Biofilms formed by a/α cells in the two media differed to various degrees in cellular architecture, matrix deposition, penetrability by leukocytes, fluconazole susceptibility, and the facilitation of mating. Similar comparisons of a/a cells in the two media, however, were made difficult given that in air, although a/a cells form traditional biofilms in RPMI medium, they form polylayers composed primarily of yeast cells in Spider medium. These polylayers lack an upper hyphal/matrix region, are readily penetrated by leukocytes, are highly fluconazole susceptible, and do not facilitate mating. If, however, air is replaced with 20% CO2, a/a cells make a biofilm in Spider medium similar architecturally to that of a/α cells, which facilitates mating. A second, more cursory comparison is made between the disparate cellular architectures of a/a biofilms formed in air in RPMI and Lee's media. The results demonstrate that C. albicans forms very different types of biofilms depending upon the composition of the medium, level of CO2 in the atmosphere, and configuration of the MTL locus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811334PMC
http://dx.doi.org/10.1128/EC.00127-13DOI Listing

Publication Analysis

Top Keywords

biofilms formed
12
a/a cells
12
biofilms
9
candida albicans
8
albicans biofilms
8
a/α cells
8
cells media
8
spider medium
8
cells
6
impact environmental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!