Upon interaction with the membrane-bound C5b-8 complex, the ninth component of complement (C9) unfolds and inserts into the membrane of cells on which surface complement has been activated. Consequently C9 oligomerization occurs and transmembrane channels of varying sizes are formed. The domain of the unfolded protein interacting with the cell membrane has so far not been identified since, unlike many integral membrane proteins, the C9 sequence does not contain a continuous stretch of hydrophobic amino acids. We studied the interaction of C9 with the lipid bilayer using the membrane-restricted photoaffinity label 3-(trifluoromethyl)-3-(m[125I]iodophenyl)diazirine (125I-TID). C9 was assembled on liposomes and after photoactivation, several labeled and non-labeled peptides, obtained by chemical and enzymatic cleavage or the 125I-TID-labeled C9, were analyzed. The segment from 176 to 345 was identified as the region containing the membrane-interacting structure. By means of secondary structure predictions, we identified two amphipathic alpha-helices (292-308 and 313-333) separated by a turn (309-312). Based on these results, we constructed a molecular model for the membrane-spanning region of C9. By analogy, we also constructed a model for this domain in perforin/cytolysin, a pore-forming protein found in the cytoplasmic granules of cytotoxic T-lymphocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0161-5890(90)90001-gDOI Listing

Publication Analysis

Top Keywords

ninth component
8
localization molecular
4
molecular modelling
4
modelling membrane-inserted
4
membrane-inserted domain
4
domain ninth
4
component human
4
human complement
4
complement perforin
4
perforin interaction
4

Similar Publications

Association of systemic inflammatory markers with white matter hyperintensities and microstructural injury: an analysis of UK Biobank data.

J Psychiatry Neurosci

January 2025

From the Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Qiao, Zhao, Cong, Y. Li, Tian, Yang, Cao, Su); the School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China (Zhu); the Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (P. Li).

Background: White matter damage is closely associated with cognitive and psychiatric symptoms and is prevalent in cerebral small vessel disease (CSVD); although the pathophysiological mechanisms involved in CSVD remain elusive, inflammation plays a crucial role. We sought to investigate the relationship between systemic inflammation markers and imaging markers of CVSD, namely white matter hyperintensity (WMH) and microstructural injury.

Methods: We conducted a study involving both cross-sectional and longitudinal data from the UK Biobank Cohort.

View Article and Find Full Text PDF

Background: The accuracy of intraoperative rapid frozen pathology is suboptimal, and the assessment of invasiveness in malignant pulmonary nodules significantly influences surgical resection strategies. Predicting the invasiveness of lung adenocarcinoma based on preoperative imaging is a clinical challenge, and there are no established standards for the optimal threshold value using the threshold segmentation method to predict the invasiveness of stage T1 lung adenocarcinoma. This study aimed to explore the efficacy of three-dimensional solid component volume (3D SCV) [calculated by artificial intelligence (AI) threshold segmentation method] in predicting the aggressiveness of T1 lung adenocarcinoma and to determine its optimal threshold and cut-off point.

View Article and Find Full Text PDF

Background: Interleukin-23 (IL-23) inhibitors and the IL-12/23 inhibitor ustekinumab constitute a pivotal class of therapeutic agents employed in the clinical management of Psoriasis, a chronic immune-mediated skin disorder. Notwithstanding their therapeutic efficacy, concerns have arisen due to the emergence of multiple adverse events (AEs) associated with their usage. This study aims to provide a comprehensive examination of the distribution and characteristics of these AEs concerning IL-23 and IL-12/23 inhibitors, with a specific focus on guselkumab, tildrakizumab, risankizumab, and ustekinumab.

View Article and Find Full Text PDF

Background: Patients suffer from esophageal squamous cell carcinoma (ESCC), which is the ninth highly aggressive malignancy. Tumor-infiltrating immune cells (TIIC) exert as major component of the tumor microenvironment (TME), showing possible prognostic value in ESCC.

Methods: Transcriptome data and scRNA-seq data of ESCC samples were extracted from the GEO and TCGA databases.

View Article and Find Full Text PDF

While nanozymes are commonly employed in nanocatalytic therapy (NCT), the efficacy of NCT is hampered by the limited catalytic activity of nanozymes and the intricate tumor microenvironment (TME). In this work, we design a high-efficiency nanozyme with NIR-II photothermal property for the mild hyperthermia-augmented NCT. In order to endow a single-component nanomaterial the ability to simultaneously catalyze and exhibit NIR-II photothermal properties, a straightforward template method is utilized to fabricate sulfur vacancies (V)-doped CoS nanocages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!