Renal biomarkers predict nephrotoxicity after paraquat.

Toxicol Lett

Therapeutics Research Centre, School of Medicine, The University of Queensland, Brisbane, QLD, Australia; Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Published: October 2013

Paraquat is a widely used herbicide which has been involved in many accidental and intentional deaths. Nephrotoxicity is common in severe acute paraquat poisoning. We examined seven renal injury biomarkers, including cystatin-C, kidney injury molecule-1, β2-microglobulin, clusterin, albumin, neutrophil gelatinase-associated lipocalin and osteopontin, to develop a non-invasive method to detect early renal damage and dysfunction and to compare with the conventional endogenous marker creatinine. Male Wistar rats were dosed orally with four different doses of paraquat, and the biomarker patterns in urine and plasma were investigated at 8, 24 and 48h after paraquat exposure. By Receiver Operating Characteristic analysis, urinary kidney injury molecule-1 was the best marker at predicting histological changes, with areas under the Receiver Operating Characteristic curve of 0.81 and 0.98 at 8 and 24h (best cut-off value>0.000326μg/ml), respectively. Urinary kidney injury molecule-1, urinary albumin and urinary Cystatin-C elevations correlated with the degree of renal damage and injury development. Further study is required to compare biomarkers changes in rats with those seen in human poisoning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2013.08.003DOI Listing

Publication Analysis

Top Keywords

kidney injury
12
injury molecule-1
12
renal damage
8
receiver operating
8
operating characteristic
8
urinary kidney
8
paraquat
5
injury
5
renal
4
renal biomarkers
4

Similar Publications

Oxidative stress and neuronal apoptosis could be an important factor leading to post-hemorrhagic consequences after germinal matrix hemorrhage (GMH). Previously study have indicated that relaxin 2 receptor activation initiates anti-oxidative stress and anti-apoptosis in ischemia-reperfusion injury. However, whether relaxin 2 activation can attenuate oxidative stress and neuronal apoptosis after GMH remains unknown.

View Article and Find Full Text PDF

Astragaloside IV attenuates cadmium induced nephrotoxicity in rats by activating Nrf2.

Sci Rep

January 2025

Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, (Third Military Medical University), Chongqing, China.

Acute kidney injury (AKI) has become a disease of global concern due to its high morbidity and mortality. This has highlighted the need for renoprotective agents. Astragaloside IV (AS-IV) is a saponin isolated from Astragalus membranaceus with good antioxidant, anti-inflammatory and anti-tumor properties.

View Article and Find Full Text PDF

Genetic and clinical spectrum of steroid-resistant nephrotic syndrome with nuclear pore gene mutation.

Pediatr Nephrol

January 2025

Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.

Background: Steroid-resistant nephrotic syndrome (SRNS) is insensitive to steroid therapy and overwhelmingly progresses to kidney failure (KF), the known pathogenic genes of which include key subunits of the nuclear pore complex (NPC), a less-recognized contributor to glomerular podocyte injury.

Methods: After analyzing their clinical characterizations and obtaining parental consent, whole-exome sequencing (WES) was performed on patients with SRNS. Several nucleoporin (NUP) biallelic pathogenic variants were identified and further analyzed by cDNA-PCR sequencing from white cells of peripheral blood, minigene assay, immunohistochemical (IHC) staining, and electron microscopy (EM) ultrastructure observation of kidney biopsy, as well as multiple in silico prediction tools, including 3D protein modeling.

View Article and Find Full Text PDF

Beyond Redox Regulation: Novel Roles of TXNIP in the Pathogenesis and Therapeutic Targeting of Kidney Disease.

Am J Pathol

January 2025

Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA. Electronic address:

Cellular stress conditions, such as oxidative and endoplasmic reticulum (ER) stresses contribute to development of various kidney diseases. Oxidative stress is prompted by reactive oxygen species (ROS) accumulation and delicately mitigated by glutathione and thioredoxin (Trx) antioxidant systems. Initially identified as a Trx-binding partner, thioredoxin interacting protein (TXNIP) is significantly upregulated and activated by oxidative and ER stresses.

View Article and Find Full Text PDF

Background: Renal ischemia-reperfusion injury (IRI) is a prevailing manifestation of acute kidney injury (AKI) with limited treatment options. TRIM44 has emerged as a possible target for treatment due to its regulatory function in inflammatory pathways.

Methods: In vivo and in vitro models were employed to ascertain the TRIM44 impact on renal IRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!