Alzheimer's disease (AD) is the most common neurodegenerative disorder among older people. However, no cure or disease-modifying treatments are currently available, and the molecular and cellular mechanisms responsible for the etiology of AD remain under debate. Recent studies suggest that the immune system has a crucial role in AD pathogenesis and, thus, immunotherapy might be a promising new treatment. Here, we review the roles of the immune system in AD pathogenesis as well as recent developments in immunotherapy for AD. Furthermore, we hypothesize that age-related immune dysregulation, which might be a consequence of the age-associated chronic inflammation known as 'inflammaging', significantly contributes to AD pathogenesis. Finally, we propose various immunological mechanisms for the development of safe and effective therapies for AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.drudis.2013.07.020 | DOI Listing |
J Med Internet Res
January 2025
Knight Foundation of Computing & Information Sciences, Florida International University, Miami, FL, United States.
Background: Digital biomarkers are increasingly used in clinical decision support for various health conditions. Speech features as digital biomarkers can offer insights into underlying physiological processes due to the complexity of speech production. This process involves respiration, phonation, articulation, and resonance, all of which rely on specific motor systems for the preparation and execution of speech.
View Article and Find Full Text PDFJAMA Neurol
January 2025
Department of Radiology, Mayo Clinic, Rochester, Minnesota.
Importance: Although 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established cross-sectional biomarker of brain metabolism in dementia with Lewy bodies (DLB), the longitudinal change in FDG-PET has not been characterized.
Objective: To investigate longitudinal FDG-PET in prodromal DLB and DLB, including a subsample with autopsy data, and report estimated sample sizes for a hypothetical clinical trial in DLB.
Design, Setting, And Participants: Longitudinal case-control study with mean (SD) follow-up of 3.
Eur Radiol Exp
January 2025
Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK.
Cerebral microbleeds (CMBs) are small, hypointense hemosiderin deposits in the brain measuring 2-10 mm in diameter. As one of the important biomarkers of small vessel disease, they have been associated with various neurodegenerative and cerebrovascular diseases. Hence, automated detection, and subsequent extraction of clinically useful metrics (e.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Biochemistry, National Chung Cheng University, 621301, Chia-Yi, Taiwan.
A fluorescent aptasensor was developed based on target-induced hairpin conformation switch coupled with nicking enzyme-assisted signal amplification (NESA) to detect the oligomeric form of ß-amyolid peptide (AβO) in cerebrospinal fluid. The hairpin DNA probe (HP) was specifically designed to recognize AβO. When AβO is present in the sensing system, it induces an HP conformational switch and triggers the NESA reaction.
View Article and Find Full Text PDFClin Neuropsychol
January 2025
Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey.
During the COVID-19 pandemic, the need to continue diagnosis and treatment processes, in addition to scientific research, led to a rapid shift towards direct-to-home tele-neuropsychology administrations, the reliability and validity of which had not been clearly established then. This study, therefore, aimed to examine the reliability of direct-to-home tele-neuropsychological assessment (TNP). The sample included 105 cognitively healthy individuals aged between 50-83 years, and 47 patients diagnosed with neurocognitive disorders (mild cognitive impairment and early-stage Alzheimer's type dementia).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!