The epidermal growth factor receptor (EGFR) is a cell-surface receptor belonging to ErbB family of tyrosine kinase and it plays a vital role in the regulation of cell proliferation, survival and differentiation. However; EGFR is aberrantly activated by various mechanisms like receptor overexpression, mutation, ligand-dependent receptor dimerization, ligand-independent activation and is associated with development of variety of tumors. Therefore, specific EGFR inhibition is one of the key targets for cancer therapy. Two major approaches have been developed and demonstrated benefits in clinical trials for targeting EGFR; monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs). EGFR inhibitors like, cetuximab, panitumumab, etc. (mAbs) and gefitinib, erlotinib, lapatinib, etc. (TKIs) are now commercially available for treatment of variety of cancers. Recently, many other agents like peptides, nanobodies, affibodies and antisense oligonucleotide have also shown better efficacy in targeting and inhibiting EGFR. Now a days, efforts are being focused to identify molecular markers that can predict patients more likely to respond to anti-EGFR therapy; to find out combinatorial approaches with EGFR inhibitors and to bring new therapeutic agents with clinical efficacy. In this review we have outlined the role of EGFR in cancer, different types of EGFR inhibitors, preclinical and clinical status of EGFR inhibitors as well as summarized the recent efforts made in the field of molecular EGFR targeting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2013.07.100 | DOI Listing |
Cancer Med
February 2025
Pulmonology and Thoracic Oncology Department, APHP Hôpital Tenon and Sorbonne Université, Paris, France.
Background: Real-world data regarding patients with non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion (ex20ins) mutations receiving mobocertinib are limited. This study describes these patients' characteristics and outcomes.
Methods: A chart review was conducted across three countries (Canada, France, and Hong Kong), abstracting data from eligible patients (NCT05207423).
Molecules
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
The overexpression of the epidermal growth factor receptor (EGFR) in certain types of prostate cancers and glioblastoma makes it a promising target for targeted radioligand therapy. In this context, pairing an EGFR-targeting peptide with the emerging theranostic pair comprising the Auger electron emitter cobalt-58m (Co) and the Positron Emission Tomography-isotope cobalt-55 (Co) would be of great interest for creating novel radiopharmaceuticals for prostate cancer and glioblastoma theranostics. In this study, GE11 (YHWYGYTPQNVI) was investigated for its EGFR-targeting potential when conjugated using click chemistry to N1-((triazol-4-yl)methyl)-N1,N2,N2-tris(pyridin-2-ylmethyl)ethane-1,2-diamine (TZTPEN).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
Cancer remains a leading cause of morbidity and mortality worldwide, highlighting the urgent need for novel therapeutic agents. This study investigated the synthesis and biological evaluation of -alkyl ()-chalcone derivatives (-) as potential anticancer agents. The compounds were synthesized via aldol condensation of substituted aldehydes and acetophenones, with structures confirmed by IR, NMR, and mass spectrometry.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Pu-Er Tea Science, Ministry of Education, Yunnan Agricultural University, Heilongtan, North of Kunming, Kunming 650201, China.
Lung cancer is the leading cause of cancer-related death. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers and over 60% express wild-type EGFR (WT-EGFR); however, EGFR tyrosine kinase inhibitors (TKIs) have limited effect in most patients with WT-EGFR tumors. In this study, we applied network pharmacology screening and MTT screening of bioactive compounds to obtain one novel grifolic acid that may inhibit NSCLC through the EGFR-ERK1/2 pathway.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy.
The expression level of Programmed Death-Ligand 1 (PD-L1) determined by the immunohistochemical method is currently approved to test the potential efficacy of immune-checkpoint inhibitors and to candidate patients with Non-Small Cell Lung Cancer (NSCLC) for treatment with immunotherapeutic drugs. As part of the CORELAB (New prediCtivebiOmaRkers of activity and Efficacy of immune checkpoint inhibitors in advanced non-small cell Lung cArcinoma) project, aimed at identifying new predictive and prognostic biomarkers in NSCLC patients receiving immunotherapeutic drugs, we investigated the role of circulating tumor DNA (ctDNA) molecular characterization as an additional predictive biomarker. We analyzed plasma ctDNA by targeted Next Generation Sequencing in a subset of 50 patients at different time points.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!