Urine offers a number of attractive features as a sample type for biomarker discovery, including noninvasive sampling, quantity and availability, stability, and a narrow dynamic range. In this study we report the first application of isotope coded protein labeling (ICPL), coupled with in-solution isoelectric fractionation and LC-MALDI-TOF/TOF, to examine and prioritize urinary proteins from ovarian cancer patients. Following the definition of stringent exclusion criteria a total of 579 proteins were identified with 43% providing quantitation data. Protein abundance changes were validated for selected proteins by ESI-Qq-TOF MS, following which Western blot and immunohistochemical analysis by tissue microarray was used to explore the biological relevance of the proteins identified. Several established markers (e.g., HE4, osteopontin) were identified at increased levels in ovarian cancer patient urine, validating the approach used; we also identified a number of potential marker candidates (e.g., phosphatidylethanolamine binding protein 1, cell-adhesion molecule 1) previously unreported in the context of ovarian cancer. We conclude that the ICPL strategy for identification and relative quantitation of urine proteins is an appropriate tool for biomarker discovery studies, and can be applied for the selection of potential biomarker candidates for further characterization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr400618vDOI Listing

Publication Analysis

Top Keywords

ovarian cancer
16
protein labeling
8
proteins ovarian
8
cancer patient
8
patient urine
8
biomarker discovery
8
proteins identified
8
proteins
6
utility isotope-coded
4
protein
4

Similar Publications

Background: Anastomotic leakage (AL) is a major complication in colorectal surgery, particularly following rectal cancer surgery, necessitating effective prevention strategies. The increasing frequency of colorectal resections and anastomoses during cytoreductive surgery (CRS) for peritoneal carcinomatosis further complicates this issue owing to the diverse patient populations with varied tumor distributions and surgical complexities. This study aims to assess and compare AL incidence and associated risk factors across conventional colorectal cancer surgery (CRC), gastrointestinal CRS (GI-CRS), and ovarian CRS (OC-CRS), with a secondary focus on evaluating the role of protective ostomies.

View Article and Find Full Text PDF

Upregulation of Cyclin E1 and subsequent activation of CDK2 accelerates cell cycle progression from G1 to S phase and is a common oncogenic driver in gynecological malignancies. WEE1 kinase counteracts the effects of Cyclin E1/CDK2 activation by regulating multiple cell cycle checkpoints. Here we characterized the relationship between Cyclin E1/CDK2 activation and sensitivity to the selective WEE1 inhibitor azenosertib.

View Article and Find Full Text PDF

Background: The quality of life (QOL) of ovarian cancer patients is often impaired by refractory ascites. Cell-free and concentrated ascites reinfusion therapy (CART) is a palliative treatment for refractory ascites, but adverse events, such as fever, are problematic. Several cytokines have been suggested to be responsible for the adverse events, but they have not been investigated in detail.

View Article and Find Full Text PDF

Investigating proteogenomic divergence in patient-derived xenograft models of ovarian cancer.

Sci Rep

January 2025

Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.

Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer.

View Article and Find Full Text PDF

Unraveling the complexity of HRD assessment in ovarian cancer by combining genomic and functional approaches: translational analyses of MITO16-MaNGO-OV-2 trial.

ESMO Open

January 2025

Uro-Gynecologic Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy. Electronic address:

Background: Ovarian cancer (OvC) constitutes significant management challenges primarily due to its late-stage diagnosis and the development of resistance to chemotherapy. The standard treatment regimen typically includes carboplatin and paclitaxel, with the addition of poly (ADP-ribose) polymerase inhibitors for patients with high-grade serous ovarian cancer (HGSOC) harboring BRCA1/2 mutations. However, the variability in treatment responses suggests the need to investigate factors beyond BRCA1/2 mutations, such as DNA repair mechanisms and epigenetic alterations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!