Solid tumors have hypoxic regions in their cores, due to low blood supply levels. Therefore, hypoxia-specific gene regulation systems have been developed for tumor-specific gene therapy. In this study, the oxygen-dependent degradation (ODD) domain on activating transcription factor-4 (ATF4) was evaluated for post-translational regulation of proteins. The ATF4 ODD cDNA was amplified by RT-PCR, and a luciferase plasmid containing the ATF4 ODD domain, pSV-Luc-ATF4-ODD, was constructed. Luciferase expression was induced under hypoxia by the ATF4 ODD domain in transfection assays into N2A neuroblastoma cells, C6 glioblastoma cells, and U87 glioblastoma cells. In the transfection assay with pSV-Luc-ATF4-ODD, RT-PCR results showed that the mRNA level did not change under hypoxia. This suggests that the induction of luciferase under hypoxia was mediated by post-translational regulation. A plasmid expressing thymidine kinase from herpes simplex virus (HSV-tk), pSV-HSVtk-ATF4-ODD, was constructed with the ATF4 ODD cDNA. The transfection assay with pSV-TK-ATF4-ODD showed that the ATF4 ODD domain induced HSV-tk expression under hypoxia and facilitated the death of C6 cells in the presence of ganciclovir (GCV). Furthermore, pSV-HSVtk-ATF4-ODD induced caspase-3 activity in the hypoxic cells. In conclusion, the ATF4 ODD may be useful for hypoxia-specific gene therapy by post-translational regulation of gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.3109/1061186X.2013.829073DOI Listing

Publication Analysis

Top Keywords

atf4 odd
24
post-translational regulation
16
odd domain
16
hypoxia-specific gene
12
gene therapy
12
regulation gene
8
gene expression
8
atf4
8
oxygen-dependent degradation
8
odd cdna
8

Similar Publications

Article Synopsis
  • This study compares the effectiveness of 2-oxoglutarate mimetics and branched-tail oxyquinoline inhibitors in activating HIF prolyl hydroxylase, focusing on their performance in a luciferase reporter assay.
  • Novel oxyquinoline inhibitors identified in this research showed significantly higher potency than existing drugs like roxadustat and vadadustat, especially when 2-methyl substitution was applied.
  • Transcriptomic analysis revealed that the new inhibitors stimulated HIF1 and HIF2 pathways similarly to roxadustat but had distinct effects on alternative pathways involving p53 and NF-κB, suggesting a specific action of the 2-methyl variant on HIF PHD2.
View Article and Find Full Text PDF

Adipocytes are the prevalent stromal cell type in adult bone marrow (BM), and leukemia cells continuously adapt to deficiency of nutrients acquiring chemoresistant profiles in the BM microenvironment. We have previously shown that fatty acid metabolism is a key energy pathway for survival of acute myeloid leukemia (AML) cells in the adipocyte-abundant BM microenvironment. The novel fatty acid β-oxidation (FAO) inhibitor avocatin B, an odd-numbered carbon lipid derived from the avocado fruit, induced apoptosis and growth inhibition in mono-cultured AML cells.

View Article and Find Full Text PDF

Solid tumors have hypoxic regions in their cores, due to low blood supply levels. Therefore, hypoxia-specific gene regulation systems have been developed for tumor-specific gene therapy. In this study, the oxygen-dependent degradation (ODD) domain on activating transcription factor-4 (ATF4) was evaluated for post-translational regulation of proteins.

View Article and Find Full Text PDF

PHD1 interacts with ATF4 and negatively regulates its transcriptional activity without prolyl hydroxylation.

Exp Cell Res

December 2011

Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku Sendai 980-8578, Japan.

Cellular response to hypoxia plays an important role in both circulatory and pulmonary diseases and cancer. Hypoxia-inducible factors (HIFs) are major transcription factors regulating the response to hypoxia. The α-subunits of HIFs are hydroxylated by members of the prolyl-4-hydroxylase domain (PHD) family, PHD1, PHD2, and PHD3, in an oxygen-dependent manner.

View Article and Find Full Text PDF

Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor.

Blood

November 2007

Department of Heart and Circulatory Physiology, Center of Physiology and Pathophysiology, Georg-August University Göttingen, Göttingen, Germany.

The activating transcription factor-4 (ATF-4) is translationally induced under anoxic conditions, mediates part of the unfolded protein response following endoplasmic reticulum (ER) stress, and is a critical regulator of cell fate. Here, we identified the zipper II domain of ATF-4 to interact with the oxygen sensor prolyl-4-hydroxylase domain 3 (PHD3). The PHD inhibitors dimethyloxalylglycine (DMOG) and hypoxia, or proteasomal inhibition, all induced ATF-4 protein levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!